My Confidence in Future Young Scientists

Crossposted from “It’s All Starts with  Science”

By Thabit Pulak

I watched as the young students of Magnet Science and Technology Elementary poured the sand and rocks into their soda bottles. The kids were learning how sand water filters work, and making their own mini versions of the filter. The interest and pride the kids took in making their filters gave me confidence that the next generation of Americans would apply the same degree of care and attention to important environmental issues, such as water quality.

The students were taking part in “enrichment clusters,” sessions in which they learn about one important public issue in depth. I was invited by 2nd-grade teacher Ms. Claborn to visit her cluster on water purification and to present a real-life example of a water filter.

I had recently worked to develop an affordable filter that removed not only bacteria and contaminants from water, but also arsenic, a poisonous substance that affects nearly 150 million people across the world today. I had the opportunity to present my water filter at the 2012 Intel International Science Fair, where I won 3rd place and EPA’s Patrick J. Hurd Sustainability Award. The Hurd Award included an invitation to present my project at the annual National Sustainable Design Expo, which showcases EPA’s People, Prosperity, and the Planet (P3) program.

I presented the filter to the class and answered questions, learning just as much from them as they did from me. I was invited to stay for the remainder of the cluster, where the students were putting final touches on their own water filters. Ms. Claborn gave each of the students some muddy water to run through the filters. It was exciting for me to see the children’s smiles as they looked at the clean water slowly trickling out of the open edge of the soda bottle after traveling through the sand and rocks. The filters were based on a water filtration activity that EPA designed specifically for students.

Afterwards, I was invited to attend the upcoming STEM (Science, Technology, Engineering, and Math) exhibit that the school was hosting. The students’ mini filters would be on display, and I was invited to display my filter alongside theirs. As the stream of curious parents and students came in, I gladly talked about both what the students did and my own filter, and what this means for the future of environmental sustainability issues like water.

This was my first opportunity to present my work outside of my school and science fairs. I felt very honored and happy to be able to give something back to the community. I hope to find ways to keep doing so!

About the Author: Guest blogger Thabit Pulak of Richardson, Texas was the winner of the Patrick H. Hurd Sustainability Award at the Intel International Science and Engineering Fair (Intel ISEF) 2012. As part of this award, he was invited to attend and exhibit at the National Sustainable Design Expo, home of the P3: People, Prosperity and the Planet Student Design Competition for Sustainability in Washington, DC. He was also the recipient of the 2013 Davidson Fellows Award.

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Mussels in the Blue

By Craig Thompson

For the last four years I have been sampling wadeable streams throughout the metropolitan Kansas City area.  I am part of the water monitoring team within the Environmental Assessment and Monitoring Branch (EAMB) at EPA Region 7.  I grew up in Mission, Kansas.  I was always outdoors exploring the woods behind my parents house and wading the waters of Turkey creek and other creeks in my neighborhood.  Now, I am responsible for collecting water and biological samples from some of these same creeks.  My particular area of expertise is macroinvertebrate sampling (freshwater mussels and aquatic insects).  I am fascinated with the mussel community information that has been collected from several sample sites on the Blue River (Figure 1).

BlueRiver

Figure 1

During the 1991-2011 sampling seasons, qualitative mussel surveys were conducted on the Blue River by Kansas Department of Health and Environment (KDHE) and by EPA Region 7.  The upper Blue River supports a diverse community of mussels compared to the lower Blue River.  The Blue River at 159th Street and Kenneth Road has one of the most diverse mussel communities of any urban stream site in the metropolitan area (Table 1).

table1

 

There are approximately 45 species of mussels found in Kansas.  Kansas Department of Wildlife, Parks and Tourism (KDWPT) lists 6 endangered and 5 threatened species.  In addition, they have a category called “species in need of conservation”, or SINC species.  There are at least 17 species of mussels found in the Blue River. The site at 159th has one endangered and four SINC mussel species.  The Mucket is an endangered mussel found typically in the Marias des Cygnes river basin (several miles south of 159th).  This rare mussel is outside its normal range, but it may have occurred in the Blue River (Missouri River Basin) historically.  The Creeper, Fatmucket, Wabash pigtoe and Yellow sandshell have interesting names and are SINC species.  Creeper (formerly called Squawfoot) is a rare find for this river and only one shell was collected at 159th.

Fatmucket is an unusual name for a mussel.  The “fat” part of this mussel’s name probably came from describing the swollen shape of the shell of this species.  This characteristic is very common in older individuals and in females.  This mussel is doing fair at 159th with a few weathered shells found at other sample sites along the river.  Wabash pigtoe and other freshwater mussels are recognized by the shape of their shell.  They have either animal hoof or foot characteristics.  Names like Fawnsfoot, Round pigtoe, Deertoe, Elktoe and Rabbitsfoot are some of the species in this group.  Wabash pigtoe is also doing fair at 159th with some recent and weathered shells found at other sample sites.  The Yellow sandshell is a beautiful mussel.   The outer layer of the shell (called periostracum) is a distinct yellow and the nacre (the iridescent, inner layer) is silvery-white (Figure 2).  The Yellow sandshell is doing well at 159th with some recent shells (unweathered shells) found in 2011.  Also, a few recent shells have been collected at other downstream sites.

Yellow sandshell (Lampsilis teres)

The other rare mussels identified in the survey may possibly be extirpated (locally extinct) from the Blue River basin.  The Pimpleback is common in other streams in the state but is rare in the Blue.  It has numerous raised structures on the outer part of its shell called pustules.  I have not observed this species for a long time and the last time shells were collected was in 2005.  The Pistolgrip is an easy mussel to identify (general shape of a pistolgrip).  It is a thick-shelled mussel that is elongate with distinct knobby ridges and pustules. The last time it was discovered at 159th was in 1993.  The Plain pocketbook shell is oval and large.  It is usually present at 159th and other sites along the Blue but not in high numbers.  And, the shell condition is usually weathered or relict.  Finally, the Lilliput is a mussel that is hard to find because of its bean-shaped size.  Some shells measure around an inch in length and only a few have been collected at 159th.

Next week, I will discuss the relative abundance of species found in the Blue as well as some of  the main water quality problems facing mussels in the Blue.

Craig Thompson lives near the mussel-less (except for Asian clams) Brush Creek, a tributary of the Blue River.  He is a Life Scientist with the Environmental Assessment and Monitoring Branch (EAMB).  Craig joined EPA in 2009 after spending thirteen years with Kansas Department of Health and Environment.  He assists EAMB staff with water quality and biological sampling surveys throughout the Region 7 area.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Mercury Rising 2: Electric Boogaloo

By Amber Tucker

Last week I briefly gave an introduction about mercury in the environment, and let you know that I would follow it up with  details from the September 12th, Mercury in the Environment Symposium held at Haskell Indian Nations University in Lawrence, KS.   Hosted by Haskell, with support from the National Atmospheric Deposition Program (NADP), US EPA Region 7, and the Kickapoo Tribe in Kansas, the symposium served as a gathering of minds from Tribal, Federal, and undergrad Haskell students, all ready to learn and discuss the effects of mercurial deposition and monitoring in our environment.

haskell

Haskell University, Lawrence, KS

We heard from David Gay, coordinator for the NADP, about the efforts of his agency to provide measurements of both depositional and atmospheric mercury across the country.  Their two programs, the Mercury Deposition Network (MDN), and the Atmospheric Mercury Network (AMNet), collaborate with several partners from federal and state agencies, Tribal Nations, universities and research institutions as well as private organizations and businesses, to monitor and collect data and provide high quality measurements to support an array of objectives.  This national monitoring network measures total mercury in one-week precipitation samples at 80 sites across the United States. The objective of the MDN is to develop a national database of weekly concentrations of total mercury in precipitation and the seasonal and annual flux of total mercury in wet deposition. The data will be used to develop information on spatial and seasonal trends in mercury deposited to surface waters, forested watersheds, and other sensitive receptors.

The Cherokee Nation of Oklahoma is one of NADP’s members, and currently operates monitoring stations for the MDN.  Wet deposition uses air monitoring stations to collect data using weekly samples or samples collected daily within 24 hours of the start of precipitation.  All MDN samples are sent to the Mercury Analytical Laboratory (HAL), which analyzes all forms of mercury in a single measurement and reports this as total mercury concentrations.  They also operate stations to catch and measure litterfall.  The litterfall monitoring initiative offers a way for a NADP site sponsor to get measurements to approximate a large part of the mercury dry deposition in a forest landscape. These samples are analyzed for the presence and concentration of mercury and methylmercury.

We heard from EPA R7 staff on additional monitoring methods, one of which is the Regional Ambient Fish Tissue (RAFT) Program.  Many of the Region 7 Tribes use data from fish tissue samples to determine the mercury content in their local waterways.  This is valuable information not only from an environmentally conscious standpoint, but this data also allows them to determine whether or not fish consumption advisories need to be in effect.

stanholder

Stan Holder of EPA Region 7 discussing the RAFT program

As part of the symposium, Tej Atili from the Kickapoo Tribe in Kansas Environmental Department hosted a fish tissue sampling demonstration.  Literally hands-on, this demo allowed attendees to go through the process of clearing a small area in the dorsal area of scales, extracting samples using an 8 millimeter biopsy punch, and inserting the sample into a sterile scintillation vial.   While our tissue donor was of the frozen fillet variety, Tej walked us through what the “live” process entails and the importance of following proper procedures and protocol in sampling.  He also sprung a surprise math lesson on us; how to calculate the appropriate daily consumption rate of fish based on body weight.  While my calculations were all wrong (math is NOT a strong suit of mine), the equation that goes into it is actually quite interesting.  If I’m ever in a bind and need to know how much tuna I can eat though, I’m going to need some help; surely there’s an app for that!

fishbiopsy

Tej Atili of the Kickapoo of Kansas demonstrating how to obtain a fish biopsy

Spending a day at my alma mater learning about mercury and sampling methods was a blast, and based on the turnout and positive feedback on this symposium, I hope they continue to hold it in the future, and maybe expand it.  In the meantime, if you’re interested in learning more about mercury monitoring and effects,  you can let your fingers do the walking and head over to EPA’s Mercury Page.  Also see NADP’s Mercury Deposition Network Page.   Until next time, I bid you adieu and wish you better fish-consumption calculation skills than I possess.  Seriously though, there’s gotta be an app for that!

Amber Tucker is an Environmental Scientist who serves as a NEPA reviewer for EPA Region 7.  She is a graduate of Haskell University and serves as Region 7′s Special Emphasis Program Manager for Native American Employment Programs.

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Flexing Freshwater Mussels in the Delaware

Reposted from Healthy Waters for EPA’s Mid-Atlantic Region

By Matt Colip

It takes more than the brute strength of legislation to clean up America’s waterways.  The complex process of aquatic ecosystem cleanup requires many tools, including one of nature’s most powerful muscles: her freshwater mussels.

That’s what the Partnership for the Delaware Estuary (PDE) – assisted by the Philadelphia Academy of Natural Sciences, and the U.S. Environmental Protection Agency’s (EPA) Scientific Dive Unit – set out to assess during a late summer freshwater mussel survey in a tidal section of the Delaware River near Philadelphia.

Freshwater mussels are bivalves similar to oysters and clams.  But, unlike oysters and clams, freshwater mussels live in inland streams, and provide valuable benefits including strengthening streambeds by keeping soils in place and providing food and habitat needed by other animals and plants.  As filter-feeders, mussels also clean the water in which they live by sucking water in and trapping solids such as dirt, algae and other pollutants, then releasing the clean filtered water back into the environment.

Being in the tidal area of the Delaware River as a scientific diver was an interesting experience. The water was not clear and flow rates were very high due to tidal fluctuation.  In these conditions, I couldn’t help but think, “There’s no way there are mussels down here.”  Despite my suspicions, when I reached the river bottom, sure enough, there were mussels everywhere, thriving and filtering the ambient water!

Freshwater mussel survey

Recording data during the freshwater mussel survey.

Ultimately, the survey, in addition to confirming the existence of an abundant freshwater mussel population in a very urbanized section of the Delaware River and providing valuable scientific data, gave me a newfound appreciation for what I used to only consider a tasty added protein to a pasta dish at a restaurant.*

For more information about freshwater mussels in the Delaware River, please visit the PDE’s website.  Read more about EPA scientific diving at facebook.com/EPADivers.

About the Author: Matt Colip works in the region’s NPDES Enforcement Branch and focuses primarily on enforcing wastewater and stormwater regulations. Originally from Texas, Matt graduated from Franklin & Marshall College in Lancaster, Pa., with an interdisciplinary BA in Public Health and has a MS from Saint Joseph’s University that focused on environmental protection policy and management. In addition to SCUBA diving, Matt is an avid bicyclist and enjoys riding with friends and colleagues.

*EPA is not endorsing the consumption of oysters, clams and mussels in the wild.   Please refer to the National Shellfish Sanitation Program guidelines associated with regulating the handling, processing and distribution of mussels prior to consumption.

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Flexing Freshwater Mussels in the Delaware

By Matt Colip

It takes more than the brute strength of legislation to clean up America’s waterways.  The complex process of aquatic ecosystem cleanup requires many tools, including one of nature’s most powerful muscles: her freshwater mussels.

That’s what the Partnership for the Delaware Estuary (PDE) – assisted by the Philadelphia Academy of Natural Sciences, and the U.S. Environmental Protection Agency’s (EPA) Scientific Dive Unit – set out to assess during a late summer freshwater mussel survey in a tidal section of the Delaware River near Philadelphia.

Freshwater mussels are bivalves similar to oysters and clams.  But, unlike oysters and clams, freshwater mussels live in inland streams, and provide valuable benefits including strengthening streambeds by keeping soils in place and providing food and habitat needed by other animals and plants.  As filter-feeders, mussels also clean the water in which they live by sucking water in and trapping solids such as dirt, algae and other pollutants, then releasing the clean filtered water back into the environment.

Being in the tidal area of the Delaware River as a scientific diver was an interesting experience. The water was not clear and flow rates were very high due to tidal fluctuation.  In these conditions, I couldn’t help but think, “There’s no way there are mussels down here.”  Despite my suspicions, when I reached the river bottom, sure enough, there were mussels everywhere, thriving and filtering the ambient water!

Recording data during the freshwater mussel survey

Recording data during the freshwater mussel survey

Ultimately, the survey, in addition to confirming the existence of an abundant freshwater mussel population in a very urbanized section of the Delaware River and providing valuable scientific data, gave me a newfound appreciation for what I used to only consider a tasty added protein to a pasta dish at a restaurant.

For more information about freshwater mussels in the Delaware River, please visit the PDE’s website.  Read more about the latest in EPA scientific diving at facebook.com/EPADivers.

 

About the Author: Matt Colip works in the region’s NPDES Enforcement Branch and focuses primarily on enforcing wastewater and stormwater regulations. Originally from Texas, Matt graduated from Franklin & Marshall College in Lancaster, Pa., with an interdisciplinary BA in Public Health and has a MS from Saint Joseph’s University that focused on environmental protection policy and management. In addition to SCUBA diving, Matt is an avid bicyclist and enjoys riding with friends and colleagues.

*EPA is not endorsing the consumption of oysters, clams and mussels in the wild.   Please refer to the National Shellfish Sanitation Program guidelines associated with regulating the handling, processing and distribution of mussels prior to consumption.

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Temperature and Violent Crime: Implications of Climate Change?

Exploring the link between outdoor temperature and violent crime in American cities.

By Janet L. Gamble, Ph.D.

Skyline of Dallas, Texas

Dallas, Texas

Has a hot and humid day ever made you cranky?  If so, you might ask this question: can hotter days lead to more human conflict?  Scientists at the U.S. EPA and the Emory University School of Medicine are investigating whether hotter temperatures affect violent crimes, such as assault, robbery, rape, and murder.

According to the Federal Bureau of Investigation, many factors influence violent crime, including weather, age, population density, family cohesiveness and divorce rates, effectiveness of law enforcement, and others. Weather is of particular interest due to an observed association between crime and temperature. This relationship raises the question of whether the hotter temperatures that are expected to accompany climate change may contribute to increased rates of violent crime.

In our recent paper published in the Western Journal of Emergency Medicine, “Temperature and Violent Crime in Dallas, Texas: Relationships and Implications of Climate Change,” we examined the relationship between daily temperature and daily incidence of violent crime in Dallas from 1993 to 1999.

We determined that the relationship in Dallas is not simply a linear function. Rather, while we found that daily rates of violent crime increase as temperatures rise in the low to moderate range, they begin to level off at temperatures above 80°F, and actually decrease above 90°F. In other words, we observe that as it gets very hot there are fewer violent crimes (see Figure 1).

Figure 1.  According to analyses of violent crime and temperature in Dallas TX, we found that aggravated assaults and other violent crimes decrease at high ambient temperatures.

Figure 1. According to analyses of violent crime and temperature in Dallas TX, we found that aggravated assaults and other violent crimes decrease at high ambient temperatures.

We were a bit surprised by our results, because prior studies have found linear and increasing crime rates even at very high temperatures. To explain our findings, we hypothesize that when it gets very hot people stay indoors where it is cooler. As a result, street crime and other crimes of opportunity are decreased. If this is correct, the higher temperatures expected to accompany climate change are unlikely to result in an increased rate of violent crime.

Yet, this is just one city and one study.  Would we get the same results in different cities with different ranges of daily temperatures? To answer this question, we are conducting analyses of multiple U.S. cities: Atlanta, Denver, Houston, and Chicago and re-doing the analysis for Dallas using more recent data. Stay tuned for more information as our climate change research continues.

About the Author: Dr. Gamble is a research scientist in the National Center for Environmental Assessment in the Office of Research and Development at the U.S. EPA.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Government by the People: Looking Back at the NEJAC After 20 Years

By Richard Moore

Richard Moore 2

Richard speaking at 1991 People of Color Environmental Leadership Summit

20 years ago, when I was appointed as one of the first members to the National Environmental Justice Advisory Council (NEJAC), I remember very clearly we decided that we wanted to make this a different type of government advisory council. The NEJAC was established by the EPA in order to obtain advice and recommendations from a diverse group of stakeholders involved in environmental justice. This was a big deal for the environmental justice community because it helped give legitimacy to the decades-long fight for the EJ movement. And so when the first board of the NEJAC convened we made a decision that we were going to make this advisory council truly representative of the people.

We wanted to lift up the voices of the grassroots, and make sure that the issues that were being addressed by the Council were the issues that people on the ground in our communities were facing. When we convened our first meetings, we made it clear to communities across the country that we were going to make sure that their voices would be heard. And sure enough, in those early meetings hundreds of concerned residents showed up to testify about the problems their communities were facing, and to hear what EPA and other Federal agencies were doing to address the disproportionate impacts that were happening across the country.

Untitled-2

NEJAC Public Comment Session

I remember the revelations that people had when they heard others from cities and towns far away talking about the same problems they were facing in their own backyards. It was transformative. The people in these meetings learned that the pollution in their neighborhoods wasn’t an accident, it was happening everywhere and in some cases it was deliberate. More importantly, they also saw what types of solutions were being tested across the country to address these injustices.

From these public comments the Council also started forming recommendations to deal with the disproportionate pollution problems we were facing. We proposed to the EPA a grant program that specifically focused on providing financial support to benefit communities with environmental justice concerns. We also recommended EPA provide expert support to help give communities equal representation when controversial permits or government actions were being proposed. These recommendations were the foundations for the EJ Small Grants Program and the Technical Assistance Grants.

In 1995, the EPA and NEJAC co-sponsored a series of dialogues across the country that provided an opportunity for environmental justice advocates and residents of impacted communities to give input on revitalization of abandoned properties called “brownfields.” Out of these public dialogues, the NEJAC developed “The Search for Authentic Signs of Hope” report. A consistent theme throughout the report was the importance of seeking and including communities in decisions and planning. Taking these recommendations into consideration, EPA took a number of actions to improve its Brownfields program. For example, EPA agreed to create a Brownfields Job Training Grants Program, which now spends over $3 million annually in low income and minority communities.

When we first convened the NEJAC 20 years ago we didn’t want to play by the rules. We wanted to make a new type of advisory council that would vigilantly fight for the rights of every resident to be heard by the government. Over the years the Council has elevated community concerns and made recommendations on many vitally important issues; from school air toxics monitoring and gulf coast restoration, to US/Mexico border issues and tribal consultation. Let’s hope that the Council maintains that spirit, and continues to expand the conversation around environmentalism over the next 20 years.

About the author: Mr. Moore served as the Executive Director of Southwest Network for Environmental and Economic Justice (Southwest Network), in Albuquerque, New Mexico, from 1993 to 2010. Mr. Moore has served on numerous government and nongovernmental committees and panels, including chair of the National Environmental Justice Advisory Council (NEJAC), and member of the National Council of Churches EcoJustice Task Force and the Congressional Black Caucus National Environmental Policy Commission. In 2010 Moore transitioned from director of SNEEJ to Senior Advisor. He currently is the program director for Los Jardines Institute in Albequerque New Mexico.  

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

A Green Light for Learning

By Dustin Renwick

Karoline Johnson shows off the air sensor.

Karoline Johnson shows off the air sensor.

Movies depict bad breath as a green haze, but anyone’s breath can change a new prototype air sensor, developed by EPA researchers, from blue to green to red.

Karoline Johnson, an EPA student services contractor, worked with Gayle Hagler, an EPA environmental engineer, to design an interactive air sensor that provides an opportunity to share science and technology with the public.

Here’s how it works: When a person breathes into the box, the sensor measures the amount of infrared light absorbed by CO2. This measurement is converted into an electric signal that a computer board translates into light. The top of the sensor changes colors based on the presence of increasing amounts of CO2 we expel each time we breathe.

The sensor provides a visual starting point for broader science discussions by transforming abstract subjects into an interactive, physical display.

“We realized there are a lot of different applications for what you can teach the public,” Johnson said. She said the sensor deals directly with air quality and climate science, but it can also serve as a  tool for talking about topics such as human health, computer programming and optics.

Low-cost, portable sensors have the potential to change air quality monitoring by allowing anyone to measure air quality with calibrated devices that require little training and provide real-time data. Current sophisticated air monitors produce accurate results but scientists can’t easily move these large monitors and the costs are prohibitively high for the average person.

Plenty of challenges remain for the next-generation air sensors, including proper calibration, where the data will go, how the data can be used.

But the promise remains. A network of cheaper sensors could give students, community leaders, scientists and university researchers a more complete picture of air quality.

Johnson is currently working on a sensor curriculum and kits that teachers and students can build in their classrooms.

 

About the Author: Dustin Renwick works as part of the innovation team in the EPA Office of Research and Development.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Career Advice from Mary Pat

marypat

At school, we are constantly given assignments to work in groups.  Often it is not the subject matter that makes the projects hard, but it is the coordinating of all the group members.  I wanted to get the perspective of an EPA employee who is tasked with coordinating a variety of people, so I sat down with Mary Pat Tyson. 

 

What is your position at the EPA?

I am the Branch Chief of the Air Toxics and Assessment Branch.  I manage three different sections: Toxics and Global Atmosphere, Indoor and Voluntary Programs, and Air Monitoring and Analysis Sections.  

Do you have prior work experiences that led you to the EPA?

During college I worked in a laboratory analyzing water samples for a drinking water project.  During that time I became aware of the EPA and different programs.  I started at the EPA in the Superfund Division working on hazardous waste site cleanup.  I moved on to a Branch Chief position in the Water Division where I worked on planning and grants along with the tribal programs.

What is a typical day like for you?

On a typical day I come in, check my email, and then meetings start.  Around 8, I have people in and out of my office for the rest of the day.  I have meetings with my boss, the section chiefs, and different state agencies.  I am also the President of the Federal Managers Association for EPA and work on issues that are of interest to federal managers.

What is the best part of your job?

Getting work done!  Getting to know the people and the work that excites them.  I love hearing about their work and helping out where I can.  In my role, I get to help people achieve their highest potential.  I enjoy communicating with section chiefs to make sure we have a strong team. 

Did you always have an interest in the environment?

I grew up in the city.  I enjoyed playing at parks, but never really was a nature person.  In high school a teacher suggested I study engineering because I was good at math and science.  This eventually led to me focusing in on studying environmental engineering.

What classes did you take in school that you use on the job today?

I took some practical classes about project management with teams.  Those have been very useful on the job.  In addition, math, science, and chemistry classes are always important.

Do you have any advice for kids today who have an interest in protecting our environment?

There are so many clubs and organizations to get involved with and learn about the environment.  Every neighborhood has opportunities to do your part.  In addition, the web is an info explosion!  You can learn how to start a compost pile in your backyard from a website.  It is important to stay close to the earth.  Take science and math classes.  The opportunities are endless!

 

Kelly Siegel is a student volunteer in the EPA’s Air and Radiation Division in Region 5, and is currently obtaining her Master’s degree in Urban Planning and Policy at the University of Illinois at Chicago.  She has a passion for sustainable development, running, and traveling with friends.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Injecting Knowledge to Cure Injustice

By Dr. Sacoby Wilson

Growing up in Vicksburg, Mississippi, I had a fondness of the Big River and the love of the environment.  Unfortunately, I was aware that some communities did not enjoy the same level of environmental quality that others did.  I grew up near a concrete plant, waste water treatment plant, oil facility, and power plant in the background.  My father was a pipefitter who over the years worked at nuclear power plants, oil refineries, coal fired plants and was exposed to many contaminants.  These experiences, combined with my diagnosis at age 7 with alopecia areata, an autoimmune disease, really drove me to explore why some communities were burdened by hazards and unhealthy land uses and how exposure to environmental stressors can lead to negative health outcomes.

Untitled-1

I was inspired to use my interest in science and environmental health for environmental justice after meeting Drs. Benjamin Chavis and Robert Bullard in the early 1990s. These professors taught me the value of getting out of the ivory towers of academia and getting into communities to spread knowledge to push for positive change. Since then, I have been a passionate advocate for environmental justice working in partnership with community groups across the United States. Through this work, I have learned that the use of science to empower through education, paired with community organizing and civic engagement, is the key to alleviating environmental injustices.

One of those individuals who helped me understand the importance of getting communities into the research process was Omega Wilson.  Wilson’s Group, the West End Revitalization Association (WERA) has  fought against environmental injustice, infrastructure disparities, and the lack of basic amenities for the last twenty years.  WERA leaders have used a community-driven research approach known as community-owned and managed research (COMR) to address environmental injustice in their community.  COMR focuses on the collection of data for action, compliance, and social change.  In combination with EPA’s collaborative-problem-solving model, WERA’s work provides a blueprint for other communities to use partnerships, stakeholder engagement, action-oriented research, and legal tools to achieve environmental justice.

Untitled-2As a professor who learned through my mentors, I also firmly believe in inspiring the next generation of academics to take their tools and research into communities that need it the most. Currently, I am building a program on Community Engagement, Environmental Justice, and Health (CEEJH) at the University of Maryland-College Park. CEEJH is building off existing work of leaders in the DC Metropolitan region to address environmental justice and health issues at the grassroots level; we use community-university partnerships, capacity-building, and community empowerment to address environmental justice and health issues in the Chesapeake Bay region.  Following in the footsteps of WERA, I plan to inspire young people to be bold, courageous, and become advocates for environmental justice.

About the author: Dr. Wilson is an environmental health scientist with expertise in environmental justice and environmental health disparities. His primary research interests are related to issues that impact underserved, socially and economically disadvantaged, marginalized, environmental justice, and health disparity populations. He is building a Program on Community Engagement, Environmental Justice, and Health (CEEJH) to study and address health issues for environmental justice and health disparity populations through community-university partnerships and the use of CBPR in Maryland and beyond.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.