Take Cover! (With Vegetation)

By Marguerite Huberbuffer

Take cover!

It’s a phrase you yell to protect against something headed your way. But did you ever think that phrase could be applied to pollutants? Well, it can – vegetative cover acts as a defense against non-point source (NPS) pollutants, protecting our lakes, streams, and water bodies.

Vegetative filter strips and riparian buffers  are conservation practices that help control the amount of sediment and chemicals that are transported from agricultural fields into water bodies. They slow down the speed of runoff and capture nutrients, keep more nutrient-rich topsoil on farmers’ fields, and reduces impacts on downstream ecosystems.

To improve water quality in large watersheds, conservation managers need to know what the problems are, where the pollutants originate, and what conservation practices work best.  However, investigating all of these factors at the watershed-wide level is a very difficult and complex task. This is why EPA is working with partners to supplement an existing watershed simulation model to estimate the efficiency of riparian buffers.

USDA’s watershed simulation model, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS), is used to evaluate the effect of farming and conservation practices on pollutants and help decide where to put these practices.  AnnAGNPS also predicts the origin and tracks the movement of water, sediment, and chemicals to any location in the watershed.

To supplement this model, researchers from EPA, USDA, and Middle Tennessee State University developed a Geographic Information Systems–based technology that estimates the efficiency of buffers in reducing sediment loads at a watershed scale.

With the addition of this AGNPS Buffer Utility Feature  technology to the USDA model, researchers and watershed conservation managers can evaluate the placement of riparian buffers, track pollution loads to their source, and assess water quality and ecosystem services improvements across their watersheds.

Riparian buffers and other vegetative cover, such as filter strips, are considered an important, effective, and efficient conservation practice that has been shown to protect ecosystem services at a local level. However, their full impact on a watershed-scale is still subject to ongoing research.

 

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Helping Cleveland Communities

By Marguerite Huber

Vacant lot with dug out section for a rain garden; rest of the area covered with straw to prevent erosion.

Turning a vacant lot into a rain garden.

EPA researchers are turning vacant lots in Cleveland, Ohio into field research sites for exploring the effectiveness of tapping green infrastructure (GI) techniques for reducing stormwater runoff and improving local waterways.

Over the last few years, the research has focused on the feasibility of re-using land left vacant after home demolition to answer questions such as: does the lot have soil that can absorb excess stormwater runoff? Can it provide ecosystem services? And how does the re-use of the lot benefit the local community?

To find out, the researchers initially looked at tree cover, the amount of rubble left after demolition, and ease of water movement on the lot. The cost of preparing the lot for re-use was dependant on the type and quality of demolition.

This research then paved the way for additional projects where EPA researchers have been studying stormwater management through GI installations, such as rain gardens and bioswales, in the vacant lots of Cleveland’s Historic Slavic Village neighborhood.

An ORISE fellow working on the project, Olivia Green, says “green infrastructure allows us to invest in natural capital and nature’s ability to absorb and redistribute stormwater. If we tap into natural capital and ecosystem services, we could manage stormwater to a high degree of quality for potentially less cost.”

Green and her colleagues are gathering baseline hydrologic and ecosystem services data. They will then use this data to collaborate with the neighborhood on a plan to use GI elements throughout the community. With continual monitoring, researchers can estimate the impact of GI implementation and identify where modifications need to be made.

Through the research, scientists hope to find a way to reduce stormwater volume, increase habitats for bees and other pollinators, and increase ecosystem services. But the data is starting to show that local streams and watersheds aren’t the only elements reaping the rewards. Reductions in violent crime and increasing property values have been recorded in the same neighborhoods where green space has replaced former abandoned, unattractive lots.

“We may create a culture that is more connected with the environment in the long term,” Green explains. The results of the research will not just benefit the residents of Cleveland, but could ultimately benefit communities everywhere, inducing a national culture that is more in tune with our environment.

About the author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Street Trees: More than Meets the Eye

By Marguerite Huber

Tree-lined street

There is more to street trees than meets the eye.

Ever since I took an urban forestry course in graduate school, I can’t help but always look at trees. I look at their bark, their roots, and their leaves. But when I look at trees, I am not just seeing their physical attributes. I also see all the conceptual benefits they provide to our communities.

Trees are not just a pretty fixture in your backyard. They provide many ecosystem services to our cities and towns, including: improving air quality, absorbing and storing carbon, supplying privacy, reducing noise, increasing property value, and decreasing building energy use. Trees are an important aspect of the green infrastructure that helps reduce storm water flow.

Amazingly, you don’t have to be an arborist to calculate tree benefits; you can use i-Tree, a USDA Forest Service model that uses sampling data to estimate street tree benefits.

In the fall of 2013, EPA scientists began research on “street trees” (trees growing in the public right-of-way, usually in between the street and the sidewalk) in nine communities in the Cincinnati, Ohio metropolitan area. The randomly selected communities all differ in geographic setting, socioeconomic characteristics, and street tree management practices.

Their research aims to answer such questions as: Can street tree structure and benefits be explained by management practices, socioeconomic conditions, or historical or geographic factors? How might invasive pests affect street trees and their benefits? How will existing street tree structure and benefits change in the future under various scenarios of tree growth and mortality, management practices, and pest outbreaks?

Researchers sampled more than 53 miles of street right-of-way along more than 600 street segments and inventoried nearly 3,000 trees. The street tree benefits were estimated using i-Tree Streets.

At this time researchers are still analyzing street tree benefits and their relation to community characteristics such as management practices, socioeconomics, and geographic setting. So far they have found management practices to be particularly important, with Tree City USA participants gaining greater benefits than communities that do not participate. Since analyses are still continuing, the findings on the other community characteristics will be released in the coming months.

When the project is completed, the researchers will have deliverables such as street tree inventory data that can be shared with community officials and an understanding of which community characteristics influence street tree structure and ecosystem services.

I invite you to check out i-Tree for yourself; I suspect as you’ll realize there are more to street trees than meets the eye.

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Around the Water Cooler: American Wetlands Month—and Your Dinner

By Lahne Mattas-Curry

ShrimpboatBayou country, located along the Gulf of Mexico, specifically Louisiana, has historically shaped the culture and the economy of the region. The Bayou—otherwise known as wetlands, swamps, or bogs—is an economic resource supporting commercial and sport fishing, hunting, recreation and agriculture.

Remember the Bubba Gump Shrimp Company? The shrimping business the fictional Forrest Gump started (and since inspired a real restaurant chain). Without clean and healthy wetlands, there’s no shrimping business, not in the movies and not in real life.

This month is American Wetlands Month and EPA is acknowledging the extensive benefits—or “ecosystem services”—that wetlands provide. From trapping floodwaters and recharging groundwater supplies to removing pollution and providing fish and wildlife habitat, wetlands improve water quality in nearby rivers, streams and lakes and even serve as a natural filter for our drinking water. They are the “kidneys” of our hydrologic cycle.

In Bayou Country, wetlands provide nearly all of the commercial catch and half the recreational harvest of fish and shellfish. They are extremely valuable to the region’s economy. Wetlands in the region provide the habitat for birds, alligators and crocodiles, muskrat, beaver, mink and a whole bunch of other important critters.

EPA researchers all over the country are looking at different ways to keep our wetlands clean and healthy. From nutrient pollution research and water quality research to buffers around rivers and stream habitat (“riparian zones”) and other green infrastructure efforts, scientists are ensuring that our wetlands can continue to do their work – providing a habitat, filtering out pollution, and supporting our economy.

This month, wherever you sit down to enjoy all the shrimp and seafood you can eat, remember that without healthy and clean wetlands, none of that would be possible.

For more information on how EPA scientists monitor and assess our wetlands, read here.

About the Author: Lahne Mattas-Curry loves clean water, healthy beaches and great seafood. A regular contributor to EPA’s It All Starts with Science blog, she helps communicate the great science in the Agency’s Safe and Sustainable Water Resources Program.

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Science Wednesday:Rising STARs

Each week we write about the science behind environmental protection. Previous Science Wednesdays.

By Aaron Ferster

This week, I had the pleasure of joining a few colleagues to talk about science communication at the 2011 EPA STAR Graduate Fellowship Conference here in Washington, DC. “STAR” stands for Science To Achieve Results, a competitive grant program EPA administers to advance human health and environmental science in support of its mission.

The conference brought together STAR grantees and STAR graduate fellows from colleges and universities across the country to talk shop about their research and learn about how their particular work fits into EPA’s commitment to science and engineering.

“The competitive STAR Fellowship prides itself for attracting, supporting and bolstering the next generation of environmental scientists, engineers and policy makers. In doing so, the program enhances the environmental research and development enterprise, advances green principles and bridges diverse communities that help EPA better meet its mission,” wrote EPA’s William Sanders III, Dr. P.H. in the Awardees Research Portfolio. Dr. Sanders is the Director of EPA’s National Center for Environmental Research, which administers STAR and other EPA grant and awards programs.

Conference attendees included STAR fellow graduate students conducting work in one of eight broad research categories important to EPA: global change, clean air, water quality, human health, ecosystem services, pesticides and toxic substances, science and technology for sustainability, and emerging environmental approaches.

As the editor—and chief cheerleader—for Science Wednesday, I am always thrilled to have the opportunity to meet EPA and partner scientists who are eager to share their work. The conference did not disappoint! While all the students’ topics have intimidating-sounding titles, (here’s one picked entirely at random: Novel Molecular Methods for Probing Ancient Climate Impacts on Plant Communities and Ecosystem Functioning: Implications for the Future), as a group, the STARs were eager to learn about opportunities for sharing their work. Please stayed tuned for updates here on Science Wednesday.

It’s great to see that EPA is supporting the next generation of scientists and engineers while it meets its own mission to protect human health and the environment. Cleary, the STARs are rising.

About the Author: Aaron Ferster is the lead science writer for EPA’s Office of Research and Development and the editor of Science Wednesday.

Editor’s Note: The opinions expressed in Greenversations are those of the author. They do not reflect EPA policy, endorsement, or action, and EPA does not verify the accuracy or science of the contents of the blog.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.