Road Tripping Through Watersheds

Road trips are a great way to take in scenery like this.

Road trips are a great way to take in scenery like this.

by Bonnie Turner-Lomax

All across the country Americans enjoy taking to the road to popular vacation spots; visiting family or friends; or on day-trips to favorite destinations. My husband and I recently completed what has been an annual ritual for the last four years…driving my daughter from our home in New Jersey to college, just outside Pittsburgh.

The roughly five hour road trip (each way) covers almost the entire east-west length of the Pennsylvania Turnpike, taking us from one end of the state to the other. The more than 300-mile journey is an experience of spectacular and varied scenery from the densely populated and urbanized Philadelphia suburbs to the rolling hills, mountains and valleys of the western end of the state.

More than half of the trip goes through the Chesapeake Bay Watershed. A watershed is an area of land that drains into a particular river, lake, bay or other body of water. Encompassing 64,000 square miles, with more than 17 million people living in its midst, the Chesapeake Bay Watershed is one of largest watersheds in the country. It is supported by thousands of smaller creeks, streams and rivers. Each of these smaller waterways has its own watershed, sometimes referred to as sub or local watersheds.

When Congress passed the Clean Water Act in 1972, it didn’t just defend the big mighty waters like the Chesapeake Bay, the Mississippi River, or the Great Lakes, it also protected the smaller streams and wetlands that flow into rivers and lakes. The law recognized that to have healthy communities downstream, we need healthy headwaters upstream.

Under the Clean Water Act, EPA and the U.S. Army Corps of Engineers released the proposed Waters of the U.S. Rule, in March that strengthens protection for clean water that’s vital to our health and our economy. Science shows what kinds of streams and wetlands impact water downstream – so our proposal says that these waters should be protected.

One in 3 Americans—117 million of us—get our drinking water from streams, creeks, and wetlands currently lacking clear protection. Safeguarding smaller streams is also crucial for our economy in areas like tourism, manufacturing, energy, recreation and agriculture.

So even when “just driving through” an area, be mindful that actions in one place can impact waterways hundreds of miles away.

 

About the author: Bonnie Turner-Lomax is the communications coordinator for the Region’s Environmental Assessment and Innovation Division. She enjoys theater, traveling, and taking long road trips with her family.

 

 

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

EPA: Protecting Water: A Precious, Limited Resource

Summer is when many families head to our oceans, lakes, and streams to fish, swim, and enjoy our nation’s waters—bringing water quality and safety to the top of our minds. EPA has a critical mission to make sure our nation’s water resources are safe for drinking, for recreation, and for aquatic life.

Earlier this summer, I asked EPA employees to share the innovative work they’re doing to protect our nation’s water resources. I’d like to share some of their great stories with you.
Continue reading

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

I’ll Trade You: Water Quality Science Edition

By Marguerite Huber

Landsat image of Chesapeake Bay

Chesapeake Bay watershed includes six states and the District of Columbia. Image: NASA/Goddard Space Flight Center Scientific Visualization Studio

The outcome of a trade can sometimes be the luck of the draw. You may not have gotten a better sandwich for the one you traded at lunch, or the all-star pitcher your team acquired in that mid-season trade may turn out to be a bust.

On the other hand, the best kind of trade is one where everybody wins. EPA researchers are helping bring just that kind of trade to improve water quality.

Chesapeake Bay is an expansive watershed that encompasses some or all of six states and the District of Columbia. High levels of nutrients flowing in from all over that expansive watershed decrease oxygen in the water and kill aquatic life, creating chronic and well-known dead zones.

To help, EPA established the Chesapeake Bay Total Maximum Daily Load (TMDL), which sets a cap on nutrient and sediment emissions to restore water quality, ensure high quality habitats for aquatic organisms, and protect and sustain fisheries, recreation and other important Bay activities.

Recent innovations in Chesapeake Bay and elsewhere have promoted a new type of trading, called water quality trading, to meet watershed-level reductions in nutrient pollution. The goal is to facilitate individual flexibility and responsiveness while creating incentives to reduce overall nutrient flow from both agricultural and urban areas.

Here is how water quality trading would work…

Farmers and wastewater treatment plants have the opportunity to team up to collectively meet the water quality goal by reducing nutrients. While both entities have their own baseline nutrient emission level they must shoot for, they can gain tradable credits if they do better. A farmer that plants nitrogen-absorbing crops such as barley and wheat can sell the credits they gain to a wastewater treatment plant that needs to reduce its own emissions.

Silhouette of kids on dock at sunset

A healthy Chesapeake is a win for everybody!

Trading is based on the widely different costs it can take to control the same kind of pollutant, depending on its source and location. For example, upgrading wastewater treatment plants and ripping up urban streets to replace leaky stormwater drainage pipes could cost billions of dollars. On the other hand, planting new or different crops is much less expensive.

Like the TMDL itself, the development of the water trading system began with science. EPA-supported scientists and economists developed a computer model to find the least costly mix of pollution-reduction options across the watershed for meeting the TMDL. The model also has been used to explore how different trading policies could help to meet TMDL requirements, and as the basis for analyzing policies leading to the nutrient trading guidelines for Chesapeake Bay.

Overall, water quality trading depends on cooperation across the watershed to help achieve faster, less expensive pollutant reductions that improve the Bay’s water quality. It’s a win-win for everybody.

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Waste not, save a lot

By Jennie Saxe

Most people think of wastewater treatment plants as the end of the pipe: it’s where the water from our sinks, showers, toilets, and sewers ends up. They’re viewed as the place we send liquid waste from our homes and businesses. It’s even right there in the name of the place: “waste.”

These pipes deliver digester gas and natural gas to the 8 microturbines which generate power for the treatment plant on-site.

These pipes deliver digester gas and natural gas to the 8 microturbines which generate power for the treatment plant on-site.

Believe me: the York Wastewater Treatment Plant doesn’t waste anything.

I had heard about the sustainable technologies that were being put into place at this treatment plant in York, Pennsylvania, and decided I had to make the trip to see for myself. General Manager Andy Jantzer led me and a small group of my colleagues on a tour of the treatment process from the head of the plant, through some repurposed aeration basins to aid in nutrient removal, past the clarifiers and sand filters, and all the way through to the treated, disinfected outfall to Codorus Creek, a tributary of the Susquehanna River, which eventually drains to the Chesapeake Bay.

So far, things looked pretty standard: primary and secondary treatment, nutrient removal, and disinfection.

Then we got to the second part of the tour. That’s where we learned that there was some serious technology hiding out in a repurposed building on the site. Only the small gas conditioning units outside might have tipped you off that inside there are 8 sophisticated microturbines – which sound much like jet engines – 3 of which are powered by gas from the facility’s anaerobic digesters and 5 of which are natural gas-powered. These allow the facility to generate nearly 7,000kW on site. Without the microturbines, the plant would be wasting methane (a greenhouse gas) from its digesters and purchasing all of its electricity from the grid. EPA’s Net Zero Energy team promotes technologies like this to help water and wastewater treatment plants become more energy efficient, and potentially “net zero” energy consumers.

Ammonia and phosphorus are recovered from the treatment plant’s digester centrate to create this pelletized fertilizer.

Ammonia and phosphorus are recovered from the treatment plant’s digester centrate to create this pelletized fertilizer.

What about the centrate (liquid waste) from the digesters? Most plants recycle that back to the head of the plant, which requires not only more energy for pumping, but also additional chemicals for treatment. Not here! The digester centrate comes to the former sludge incinerator building where a special process removes phosphorus and ammonia and creates a long-lasting, slow-release, pelletized fertilizer that is being used in agriculture, on golf courses, and in other applications.

See what I mean? Nothing is wasted. By recovering resources like phosphorus and energy from wastewater, this treatment plant has joined a new breed of facilities that are extracting beneficial products from what most people consider waste. The dedicated management and staff at the York Wastewater Treatment Plant are making a difference to the communities that they serve. Pursuing sustainable technologies like the ones that York has adopted not only solve problems for today, but for tomorrow, as well.

Dr. Jennie Saxe joined EPA in 2003 and is currently a Water Policy Analyst in the Water Protection Division of EPA Region 3 in Philadelphia. When not in the office, Jennie enjoys spending time tending to a vegetable garden.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Protecting Our Natural Resources – Here and Abroad

OITA PDAA Jane Nishida talks to key local and national stakeholders working to preserve and protect Vietnam’s Ha Long Bay

OITA PDAA Jane Nishida talks to key local and national stakeholders working to preserve and protect Vietnam’s Ha Long Bay

 

By Jane Nishida, Principal Deputy Assistant Administrator for the Office of International and Tribal Affairs

The Chesapeake Bay is one of the nation’s most vital resources, providing important habitat for fish and wildlife, and recreational and tourism opportunities for millions of people each year. While increased tourism and development has supported the area’s economic growth, it has brought with it a suite of environmental challenges, including nutrient pollution, loss of forests and wetlands, and air pollution stemming from increased development in the area. In my previous roles as Secretary of Maryland’s Department of the Environment and Maryland Director of the Chesapeake Bay Foundation, I saw first-hand the impacts of this damage, and worked closely with local residents, stakeholders, elected officials and the federal government to begin on a major restoration and protection effort. Not only can we protect the bay and surrounding wildlife, we can ensure the continued economic benefits of tourism for the future.

Nearly 8,000 miles away from the Chesapeake Bay lies an area with similar opportunities and challenges. Vietnam’s Ha Long Bay, a UNESCO World Heritage Site, is known around the world for its striking beauty and diverse ecosystem. However, as with the Chesapeake Bay, concerned citizens and government officials are seeing increased degradation and pollution as more and more people access the Bay for tourism, recreation and shipping development. Continue reading

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Farm Conservation Practices are Working in the Chesapeake Bay Watershed

Farmers are implementing conservation practices that are both good for their business and improving water quality

Farmers are implementing conservation practices that are both good for their business and improving water quality

by Kelly Shenk

As the agricultural advisor for EPA’s mid-Atlantic region, I’ve had the opportunity to accompany the EPA mid-Atlantic Regional Administrator in talks with farmers throughout the Chesapeake Bay watershed through roundtable discussions and tours of their farms. We’ve observed their successes, challenges, and opportunities.  It’s encouraging to see how engaged farmers are in implementing conservation practices that are both good for their business and improving water quality.

Last month the Chesapeake Bay Program reported that pollution controls put in place over the last four years have resulted in an estimated 7% reduction of nitrogen, 11% reduction of phosphorus, and 6% reduction of sediment in the Bay Watershed.

Agriculture is responsible for about one-third of these reductions because producers have stepped up their conservation practices such as cover crops that take up residual nitrogen and phosphorus in the soil after crops are harvested. Other effective conservation practices include tillage that prevents nutrients and sediment from running off of cropland; and fencing to keep cows out of streams.

While this progress is encouraging, there’s still much that needs doing to restore the Bay.  Using 2009 as a baseline, the Chesapeake Bay TMDL or pollution diet calls for having measures in place by 2017 to achieve at least 60 percent of the pollution reductions necessary for restoring the Bay to water quality standards.  The Bay jurisdictions are in the process of achieving this objective through upgrading of wastewater treatment plants and septic systems, increased implementation of agricultural conservation practices, improving urban stormwater management, and addressing air pollution sources. All sources are tackling their share of the challenge

The pace of the Bay jurisdictions’ pollution reduction efforts will get quicker moving forward.  For agriculture, I think the keys to success are strong state programs, targeted federal and state financial and technical assistance, incentives that engage more producers, and continued innovation.

We’re encouraged by some of the progress that’s already being made.  We are seeing increased financing for high priority practices promoted by the States such as stream exclusion and cover crops.  States are strengthening their programs for addressing water quality concerns from small animal operations.  We’re also seeing incentives such as Ag Certainty programs to engage more producers in conservation practices.

In my time out in the field, I am always inspired at the creativity and innovation of farmers.  With a good knowledge of the States’ pollution reduction goals, targeted financial and technical assistance, and the flexibility to reach water quality goals in a way that works for their business, I’m confident they can get the job done.  But it will take all of us working together in all sectors, building on the progress that we’ve made thus far, and staying on track to reaching our goals of restoring our local waters and the magnificence of the Chesapeake Bay.

Kelly Shenk is EPA Region III’s Agricultural Advisor

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

It’s all about the Network: Funding Agricultural Practices that Restore Clean Water

A network of technical professionals visit a PA dairy farm that received financial assistance to install agricultural conservation practices which are good for business and local water quality.

A network of technical professionals visit a PA dairy farm that received financial assistance to install agricultural conservation practices which are good for business and local water quality.

 

by Kelly Shenk

 If you are a farmer in the Chesapeake Bay Watershed, there are some great workshops providing information on ways to finance conservation practices to restore local waters and the Chesapeake Bay. The University of Maryland Environmental Finance Center  is holding a series of Agricultural Finance Workshops in Delaware and West Virginia and the Upper Susquehanna region in Pennsylvania later this year.  In January and February, I participated in the Ag Finance workshops that were held in Lancaster County, Pennsylvania and in Virginia’s Shenandoah Valley and found them extremely informative.

These workshops provide a wealth of knowledge about programs to assist in reducing nitrogen, phosphorus and sediment pollution. I learned that while funding is available, certain procedures need to be followed closely.  Some of the types of funding available include: USDA Farm Bill funding; state agricultural cost share funding; federal and state loan programs; public and private grant programs; and tax credits.  There are also creative ways to combine these funding mechanisms that reduce the amount you, as a farmer, would pay.

Take for example, fencing in the Shenandoah Valley. Fencing is a low-tech way to protect waterways by keeping cattle out of streams. There are a number of programs to help fund stream exclusion and we heard about several at the workshop:  Farm Bill programs, the VA agricultural cost share program that covers up to 100% of the cost of stream exclusion, and other programs for farmers who need more flexibility in the type of fence and width of buffer installed. There’s even a program to pay farmers $1 for every foot of fence they have paid for themselves to cover the maintenance costs.

 The workshop presenters are familiar with each other’s programs, so they know how to “piggy back” programs to minimize the cost to farmers.  Most importantly, they know the producers in their region and understand their issues.  They discuss the available options with the farmer, decide on a plan of action, and then identify the program or mix of funding programs that will meet the farmer’s needs.  With this approach, the technical network helps farmers address issues with the least amount of cost, hassle, paperwork, and confusion.

I left these workshops encouraged by the dedicated cadre of technical professionals that are out in the field every day working with farmers to find solutions to protecting water quality while keeping farmers farming.

For more information on future workshops, contact:  Jill Jefferson, University of Maryland Environmental Finance Center, at jilljeff@umd.edu.

 

Kelly Shenk is EPA Region III’s Agricultural Advisor. 

 

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

A Streetcar Named…Green Infrastructure?

By Matt Colip

A 40-degree day wasn’t ideal for an open-air trolley ride.  But the sights we witnessed in Virginia’s capital were worth the chill.

I joined EPA mid-Atlantic Regional Administrator Shawn Garvin as he participated in a recent trolley tour of projects in Richmond that are helping to improve water quality in the James River and, ultimately, the Chesapeake Bay.  The tour was provided by officials from the City of Richmond, the Commonwealth of Virginia, and the non-profit Alliance for the Chesapeake Bay.

The first stop was the city’s wastewater treatment plant to view massive upgrades designed to sharply reduce pollution discharges to the James.  EPA funded more than half of the project through its Clean Water State Revolving Fund.  From here, the trolley rolled off toward downtown Richmond.

Regional Administrator Garvin (center) tours green infrastructure sites in Richmond.

Regional Administrator Garvin (center) tours green infrastructure sites in Richmond.

There, we came to a stop for a different form of transportation: the Bus Loop Green Street project.  This project retrofitted the bus loop for the Capitol to utilize pervious pavement and rain garden planters with native species to filter and absorb the captured rain water.  This was a great example of the green infrastructure opportunities offered by urban environments – a strategy EPA supports across the region to improve water quality.

After a few minutes at this site, we traveled to our third stop, Capitol Square – this time by foot. Walking past the Capitol to this next stop reminded us of how beautiful Virginia’s Capitol building truly is; its historic architecture makes you think that Thomas Jefferson could be walking out the front door.  It may have been a cold day, but the sky was clear and the sun was beaming down and reflecting off the Capitol building’s sheet white walls – you almost needed sunglasses just to look at it!

It wasn’t long before a representative from the Alliance for the Chesapeake Bay explained that the brick walkway surrounding the Capitol that we were standing on was pervious, too.  An underground cistern harvests rainwater from the walkway, which is then used to water plants and provide water for the Bell Tower fountain on Capitol Square.  This project not only reduces the amount of stormwater runoff from what was once an impervious surface surrounding the Capitol building, but serves as a high-profile education tool to inform the public about the benefits of controlling stormwater with surfaces that let the rain soak in.

The final stop was a single-lane carriage street on 12th Street near the Capitol that had also been retrofitted with porous material, another example of history interfacing with cutting-edge environmental solutions in Richmond.

Both Regional Administrator Shawn Garvin and I were very impressed with these projects, which provide a tangible representation of what Richmond and other urbanized areas can do to improve the long-term health of their local waters and the larger water systems they are a part of.

About the Author: Matt Colip works in the region’s Office of State and Congressional Relations as the as the State and Congressional Liaison for the Commonwealth of Virginia. Originally from Texas, Matt graduated from Franklin & Marshall College in Lancaster, Pa., with an interdisciplinary BA in Public Health and has a MS from Saint Joseph’s University that focused on environmental protection policy and management. In addition to SCUBA diving, Matt is an avid bicyclist and enjoys riding with friends and colleagues.

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Progress in Communities: It All Starts with Science

This week is the 43rd Anniversary of the establishment of the Environmental Protection Agency, and we are marking the occasion by revisiting how our collective efforts on behalf of the American people help local communities become cleaner, healthier, and more sustainable. As the Assistant Administrator for the Agency’s Office of Research and Development, I can’t help but see a strong undercurrent of science and engineering in every success story.

Over the past four plus decades, EPA scientists and engineers, along with their partners from across the federal government, states, tribes, academia, and private business, have supplied the data, built the computer models and tools, and provided the studies that have helped communities take action to advance public health and protect local environments.

In every area of environmental and human health action, EPA researchers have helped local communities make progress. While examples abound, here are just a few:
Continue reading

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Spectacular views of bald eagles over the Susquehanna River

By Roy Seneca

Anybody who has witnessed the beauty of a bald eagle soaring above knows that it can be quite exhilarating.  Not only is the bald eagle a proud national symbol, but it is also an incredible environmental success story.

It was not too long ago that bald eagles in our skies were on the verge of extinction due to the impact of pesticides like DDT.  But today, bald eagles can be sighted in the skies across the country thanks to environmental laws that protect them and have allowed their population to surge.

Well, if you get a kick out of seeing one or two bald eagles, you should take a trip to the Conowingo Dam in Darlington, Md. to witness an amazing sight of up to 100 or more bald eagles in one location.  During late fall and throughout most of the winter, the Conowingo Dam on the Susquehanna River may be the best location east of the Mississippi to witness these incredible raptors.

A shot of a bald eagle in Conowingo, MD. Photo courtesy of Flickr photographer daisyj85 from EPA’s State of the Environment Photo Project

A shot of a bald eagle fishing at the Conowingo. Photo courtesy of Flickr photographer daisyj85 from EPA’s State of the Environment Photo Project

The bald eagles congregate at the dam because it provides them with some easy meals.  When the dam’s turbines are running, it provides a steady water flow filled with fish on the surface where the bald eagles and other birds swoop in to feast on.

The location also attracts large numbers of gulls, herons, black vultures and other birds, but the bald eagles are the stars of the show.  When they are not fishing, the bald eagles sometimes perch in nearby trees and perform acrobatic shows in the sky above the river.  Photographers, birdwatchers and families come out to see the birds throughout the season.

It’s peak viewing time if you’d like to see for yourself.   For more details, check out this blog.

About the Author: Roy Seneca works in the press office for EPA’s Mid-Atlantic Region.

 

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.