When Green Goes Bad

Flyer banner for "When Green Goes Bad" webinar

By Lahne Mattas-Curry

When you think about the environment, what color comes to mind? Green, right? Because in everything we know in the environment “Green is Good.”

And while that is very often true, in the case of lakes and ponds that suddenly go green, it is most likely the result of an algae bloom, which, increasingly, contain many harmful cyanobacteria.  Also known as “blue-green algae,” some species of these tiny, photosynthetic aquatic organisms produce toxins. The impacts of these harmful algal blooms are widespread and often not good. Not good at all.

From acute adverse human health impacts such as respiratory and gastrointestinal problems (yuck) to known deaths of animals (keep the family dog out of green water, please!!), blooms like these are becoming a more frequent occurrence and are having greater impacts.

To better understand how algal blooms impact human health, identify the toxicity of cyanobacteria, predict the probability of bloom occurrences, and share this information broadly, our researchers have been working on a research project focused this topic since 2012.

The researchers involved in the project will be sharing what they have learned during a webinar on Wednesday, June 25 from 12:00 to 1:00pm as part of EPA’s Water Research Webinar Series.

We hope you will join them to hear an overview of the breadth of their algae bloom research, and learn details about ecological modeling they conducted on cyanobacterial blooms in U.S. lakes. They will explain how they embraced the concept of “Open Science”—the movement to make scientific research and data accessible to the public.

And if that’s not enough, they will also be available for a twitter chat on June 26 from 2:00pm to 3:00pm. You can submit questions now by using #greenwater or you can wait until the day of the chat. Please follow us @EPAresearch.

To register for the webinar, please send an email to sswr@epa.org with your name, title, organization and contact information.

Meet our Scientists

Jeff Hollister, Ph.D.
EPA research ecologist Jeff Hollister received his Ph.D. in Environmental Science from the University of Rhode Island. His past experience is in applications of geospatial technologies to environmental research and broad-scale environmental monitoring, modeling, and assessment. His current research focuses on how nutrients drive the risk of cyanobacterial blooms in lakes and ponds.

Betty Kreakie, Ph.D.
EPA research ecologist Betty Kreakie earned her Ph.D. in integrative biology from the University of Texas. Her work focuses on the development of spatially-explicit landscape level models that predict how biological populations and communities will respond to human-caused influences, such as nutrient and contaminant pollution, climate change, and habitat conversion.

Bryan Milstead, Ph.D.
EPA post-doctoral research ecologist Bryan Milstead received his Ph.D. from Northern Illinois University for work on small mammal population dynamics in Chile. Before coming to EPA, he worked for the U.S. National Park Service and for the Charles Darwin Foundation for the Galapagos Islands. His current work focuses on understanding how nutrient over-enrichment affects the aesthetic quality and risk of cyanobacteria blooms in lakes.

About the Author: Lahne Mattas-Curry communicates the many cool things happening in water science for EPA and hates #greenwater. She urges everyone to think twice about what fertilizers they use on their lawn and encourages pet owners to “pick up the poop” to reduce nutrient pollution.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Insects as Indicators

By Marguerite Huber

Twelve spotted skimmer dragonfly perched on a reed.

Twelve-spotted skimmer. Image courtesy of the U.S. Fish & Wildlife Service.

Scientists have developed ways to use certain species as kinds of “living barometers” for monitoring the quality of the environment. By studying the abundance, presence, and overall health of such indicator species, they gain insight into the general condition of the environment. Now, EPA researchers are developing ways to use insects in this way to explore the effects of environmental contamination and how it might spread across a watershed.

The Superfund program, established by the Comprehensive Environmental Response, Compensation and Liability Act, identifies sites that contain hazardous substances, such as pollutants and contaminants, that may pose a threat to human health or the environment.

Superfund sites include former landfills, industrial and military complexes, and abandoned mines.

In their study, EPA researchers sought to determine if insect communities could be used to measure the benefits of Superfund site clean-up and to monitor the effectiveness of site remediation and restoration. To be accurate, they also had to account for the differences between impacts from Superfund contaminants, and those related to urbanization.

The researchers compared a number of indicators related to urbanization, such as land development, housing unit density, and road density.

In the end, the researchers found that once they had accounted for the effects of urban development, they were able to use insects as indicators for detecting the effects of Superfund sites in the watershed. Using what they learned from that work, they also developed models that can discriminate the effects of Superfund activities from those of development upstream, and help identify those streams where impacts exceed what would be expected based solely on the amount of development across a watershed. Researchers and others can also use the models to assess the effectiveness of remediation efforts at contaminated sites.

Overall, developing methods to tap insects as indicators is helping EPA researchers understand how Superfund sites affect entire watersheds. It’s a big step toward cleaning them up and helping EPA fulfill its mission of protecting human health and the environment.

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Winning Solutions for Nutrient Pollution

By Dustin Renwick

The partnership for the challenge includes: - White House Office of Science and Technology Policy - U.S. Environmental Protection Agency - U.S. Department of Agriculture - National Oceanic and Atmospheric Administration  - U.S. Geological Survey - Tulane University - Everglades Foundation

The partnership for this challenge currently includes:
– White House Office of Science and Technology Policy
– U.S. Environmental Protection Agency
– U.S. Department of Agriculture
– National Oceanic and Atmospheric Administration
– U.S. Geological Survey
– Tulane University
– Everglades Foundation

Nutrient pollution, an excess of nitrogen or phosphorous, costs the country at least $2.2 billion annually. Excess nutrients reaching our waterways spark algae blooms that overpower otherwise healthy ecosystems. In turn, those blooms can contaminate drinking water, kill aquatic species, and create negative impacts for water-based recreation and tourism.

Members of a public-private partnership announced a prize competition in fall 2013 to collect innovative ideas for addressing nutrient overloads. The competition asked innovators to identify next-generation solutions from across the world that could help with reduction, mediation, and elimination of excess nitrogen and phosphorus in water.

Criteria for judging included technical feasibility and accompanying strategic plans for making solutions available and useful. Innovators who met the challenge requirements were each awarded $5,000. They and their winning ideas are:

  • Aaron Ruesch and Theresa Nelson, with the Bureau of Water Quality in the Wisconsin Department of Natural Resources, proposed combining several data sources into a decision support tool for rapid watershed planning – in some cases, within a day. He used equations to estimate runoff, erosion and soil loss on farms. “All these things together help give us an index of vulnerability,” Ruesch says. The software means local watershed groups can “get the plans out the door quicker to get boots on the ground to implement actual practices.” Ruesch says the money will allow for more outreach and training across the state in the coming year.
  • David White, president of Ecosystem Services Exchange, proposed a real-time management system that would control water flow and nutrient loading in a field’s tile-drained water. This system would provide quantified evidence of nutrient reductions. “We believe we can reduce nitrogen by 25 to 50 percent,” White says. He is currently discussing a potential test project with officials in Charles City, Iowa. Phase two of White’s solution would pilot a nutrient trading program based on the reductions. “If we can create an asset class for farmers through water quality markets, we can reduce nutrients entering the waterways at a much lower cost.”
  • Jon Winsten, an agricultural economist and program officer at Winrock International, proposed a pay-for-performance incentive approach, called “model at the farm, measure at the watershed.” Science-based models quantify nutrient losses on individual fields. “Farmers have unique knowledge of their lands,” Winsten says. “By offering a performance-based incentive, then farmers are motivated to find the most appropriate and most cost-effective actions for their specific farms and fields. That’s the most efficient way to get conservation on the ground.” Farmers would receive secondary incentive payments when their entire watershed met reduction goals.

Winners may be part of ongoing discussions by federal and private partners to continue to bring innovative solutions to bear on the problem of excess nutrients in waterways.

About the author: Dustin Renwick works as part of the innovation team in the EPA Office of Research and Development.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Water Monitoring Innovation Thrives in Clusters

By Ryan Connair

close up of waterfallThis year’s National Water Quality Monitoring Conference is being held this week in Cincinnati, Ohio. The conference will bring together hundreds of professionals from the water industry to talk about water quality monitoring and share information about new monitoring approaches and technologies.

Cincinnati is a perfect venue for a conference on water monitoring. Not only is it home to the largest federal water research facility, it also serves as the hub of the water technology cluster Confluence. Covering the Ohio River Valley (southwest Ohio, northern Kentucky, and southeast Indiana), Confluence “stems from an EPA initiative that recognizes the importance of harnessing regional expertise to encourage economic development, and environmental and human health protection,” according to its website.

Confluence’s goal is to connect water researchers, businesses, universities, and others in the region to exchange ideas and forge partnerships. The result is more innovative water technologies, including new monitoring technologies.

Here are a few of the water quality monitoring projects flowing from Confluence members:

  • The University of Cincinnati is working to establish a Miami Valley Groundwater Observatory. The Observatory would consist of a series of monitoring wells in the Great Miami Buried Valley Aquifer System. The wells will serve as a testbed for real-time, wireless water quality sensors. The data collected by the sensors will be useful for modeling groundwater conditions in aquifers and similar water sources across the country.
  • EPA is working with local startup Urbanalta Technologies and the Metropolitan Sewer District of Greater Cincinnati (MSDGC) to develop novel sewer flow sensors that can measure flow during heavy rains, helping to pinpoint the locations of combined sewer overflows.
  • MSDGC, Northern Kentucky Sanitation District 1 (NKSD1), and the consulting firm Stantec worked with EPA on an InnoCentive challenge on sensors for combined sewer overflows. Both sewer districts have expressed interest in testing the winning technologies—which will be featured in our next blog post tomorrow morning.
  • University of Cincinnati graduate student Jacob Shidler has started a company, Liquid, to continue developing an app that will let scientists enter water quality data on the spot and upload it to the cloud. His app will make it easier for many people to contribute to a single data set, empowering citizen scientists.

These are only a few examples of the innovative water quality monitoring work coming out of Confluence—and it isn’t the only water technology cluster in the United States. EPA is currently working with more than a dozen water cluster initiatives across the country. We’re excited to see what else they come up with!

About the Author: Ryan Connair supports EPA’s Environmental Technology Innovation Clusters program and works closely with Cincinnati’s Confluence.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Willingness to Pay for Green Space

By Marguerite Huber

Bike trail through residential green space

How much are you willing to pay for the benefits of low impact development?

Have you ever taken an economics course? If so, you probably studied the concept of “willingness to pay,” or WTP. A person’s willingness to pay for something is the dollar value they have attached to it. For most of us, it’s easy to decide how much we are willing to pay for a car or new home. But what about environmental benefits? EPA researchers are exploring that exact question for green spaces and land development options.

Low impact development (LID) and green infrastructure practices reduce the amount of stormwater running off a particular site. So in places where stormwater runoff has become a significant source of water pollution, the use of these practices has become more necessary. Low impact development benefits and characteristics can include:

  • improvement in air quality
  • increased natural areas and  wildlife habitat
  • improved water quality
  • aesthetic benefits
  • minimized parking lots and other impervious surfaces
  • increased access to transit, shared parking, and bicycle facilities

EPA researchers have identified an additional benefit of such practices: increased property values. They and Abt Associates contractors found that property values increase for both new developments and existing properties when located near green spaces associated with low impact development.

The researchers analyzed 35 studies and focused on predicting how much people were willing to pay for small changes in open space. The investigation evaluated the differences in value between open spaces with and without recreational uses.

Results showed that the design and characteristics of a low impact development affects the level of benefits property owners could expect, and that effects on property values declined the farther they are from open spaces. For example, consider a plan that includes a 10% increase in park space or other green space. Property values are projected to increase by 1.23% to 1.95% when located within 250 meters of such a green space, but by 0.56% to 1.2% when located 250-500 meters away. For a homeowner, that could mean a lot of money.

Overall, researchers found that the proximity to and the percent change in open space determined a household’s willingness to pay for low impact open spaces, but it may be site-specific for type of vegetation and recreational use.

Additionally, many states are encouraging developers to use these practices through regulations, incentives, and educational campaigns, so knowing which low impact characteristics maximize the benefits can be useful for policymakers and developers.

You don’t need to have taken an economics course to understand the concept of willingness to pay. It can be applied to the value you place on increased green space and improved water quality. So just how much are you willing to pay for the benefits of low impact development?

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Invaders in the Great Lakes

By Marguerite Huber

Smaller zebra mussels cover a larger native mussel

Zebra mussels cover a native mussel. Image courtesy of U.S. Fish and Wildlife Service

I grew up in Chicago, where Lake Michigan, or simply “the lake” as we locals refer to it, is a part of everyday life. I swam in it. I ran next to it. I drank the water from it. I even paddle boarded on it.

As fond as I am of Lake Michigan, it and all the other Great Lakes are facing a big challenge. They have been invaded by more than 190 species of aquatic plants and animals not native to the area, and at least 22 fishes and 16 aquatic invertebrates pose a high risk of invading the Great Lakes in the near future.

These invasive species can be introduced deliberately or accidentally through ballast water discharge from commercial vessels, recreational boating and fishing, and pet aquarium releases. These species cause significant ecological and economic impacts in the Great Lakes. For instance the cost to the Great Lakes region from invasive species is over $200 million dollars annually!

EPA researchers have been studying how to monitor and detect aquatic invasive species through two different studies in the Duluth-Superior Harbor area, the largest Great Lakes commercial port and one under intense invasive species pressure. A Great Lakes-wide early detection program is required by 2015 under the Great Lakes Water Quality Agreement.

The goal of the research was to evaluate sampling designs that would help develop an efficient early-detection monitoring program for invasive species. To do so, researchers conducted intensive sampling to create a data set that could be used to explore different monitoring strategies.

One study concluded that species detection can be enhanced based on sampling equipment and habitat, making it an important step towards improving early detection monitoring. They found the most efficient strategy was to sample the mix of habitats or gear that produce the most species, but to also sample across all habitats.

In this study, researchers found high occurrences of certain invasive species such as zebra mussel and Eurasian ruffe.

In another study, researchers focused on determining the effort required for early detection of non-native zooplankton, benthic invertebrates, and fish in the Harbor. To do so, the research team tallied and identified roughly 40,000 zooplankton, 52,000 benthic invertebrates, and 70,000 fish during sampling.

In the early detection study, the researchers detected 10 non-native fish species and 21 non-native aquatic invertebrate, some of which were new detections for the Great Lakes. The central finding was that detecting 100% of species is unrealistic given resource limitations, but monitoring at a level that can detect greater than 95% of the species pool is possible. At this level of effort, there is better than a 50% chance of finding a very rare species, such as one that was recently introduced.

Overall, EPA’s invasive species research is yielding a substantial advance in the ability to design monitoring and early warning systems for aquatic invasive species. Together with prevention methods, that should go a long way in maintaining the biological integrity and sustainability of the Great Lakes. That would be welcome news for anyone who relies on “the lake” for their livelihood, their drinking water, or for a place to paddleboard.

 

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Rethinking Wastewater

By Marguerite Huber

glass of beer

The next time you enjoy a beer you might be helping the environment.

The next time you enjoy a cold, refreshing beer or glass of wine, you might also be helping the environment. Over 40 billion gallons of wastewater are produced every day in the United States, and wineries, breweries, and other food and beverage producers are significant contributors.  For example, the brewing industry averages five or six barrels of water to produce just one barrel of beer.

But where most see only waste, others see potential resources. What we label “wastewater” can contain a wealth of compounds and microbes, some of which can be harvested.

One innovative company that has recognized this, Cambrian Innovation, is harnessing wastewater’s potential through the world’s first bioelectrically-enhanced, wastewater-to-energy systems, EcoVolt. (We first blogged about them in 2012.)

Cambrian Innovation is working with Bear Republic Brewing Company, one of the largest craft breweries in the United States. Located in California, which is suffering from severe drought, Bear Republic first began testing Cambrian’s technology to save water and reduce energy costs. Fifty percent of the brewery’s electricity and more than twenty percent of its heat needs could be generated with EcoVolt. Compared to industry averages, Bear Republic uses only three and a half barrels of water to produce one barrel of beer.

The EcoVolt bioelectric wastewater treatment system leverages a process called “electromethanogenesis,” in which electrically-active organisms convert carbon dioxide and electricity into methane, a gas used to power generators.  The methane is renewable and can provide an energy source to the facility.

Rather than being energy intensive and expensive, like traditional wastewater treatment, Cambrian’s technology generates electricity as well as cost savings.

Furthermore, the EcoVolt technology is capable of automated, remote operation, which can further decrease operating costs.

EPA first awarded Cambrian Innovation a Phase I (“proof of concept”) Small Business Innovation Research contract in 2010. Based on that work, the company then earned a Phase II contract in 2012 to develop wastewater-to-energy technology. Cambrian Innovation has also developed innovative solutions with funding from other partners, including the National Science Foundation, National Aeronautics and Space Administration, Department of Defense, and U.S. Department of Agriculture.

With access to water sources becoming more of a challenge in many areas of the country, Cambrian’s technology can help change how we look at wastewater. It doesn’t have to be waste! Wastewater can instead be an asset, but only as long as we keep pushing its potential. That can make enjoying a cold glass of your favorite beverage even easier to enjoy!

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Organizing the Ocean

coastal scene

The Coastal and Marine Ecological Classification Standard is the first such system for marine ecosystems.

By Marguerite Huber

Do you like things alphabetized? In chronological order? Color coded? If so, you probably love organization. You probably have a place and category for every aspect of your life.

Well researchers from the National Oceanic and Atmospheric Administration, NatureServe, the U.S. Geological Survey, and EPA have taken organization to the next level. For more than a decade they have been working to organize the first classification standard for describing coastal and marine ecosystems.

This classification standard, called the Coastal and Marine Ecological Classification Standard (CMECS), offers a simple framework and common terminology for describing ecosystems—from coastal estuaries all the way down to the depths of the ocean. It provides a consistent way to collect, organize, analyze, report, and share coastal marine ecological data, which is especially useful for coastal resource managers and planners, engineers, and researchers from government, academia, and industry. The Federal Geographic Data Committee has already adopted CMECS as the national standard.

Organization at its finest, CMECS is basically a structure of classification, with the helpful addition of an extensive dictionary of terms and definitions that describe ecological features for the geological, physical, biological, and chemical components of the environment.

Using CMECS, you first classify the ecosystem into two settings, which can be used together or separately. The Biogeographic Setting covers ecoregions defined by climate, geology, and evolutionary history. The second, Aquatic Setting, divides the watery territory into oceans, estuaries and lakes, deep and shallow waters, and submerged and intertidal environments.

For both of these settings, there are four components that describe different aspects of the ecosystem, which are outlined in CMECS’s Catalog of Units. The water column component describes characteristics of, you guessed it, the water column, including water temperature, salinity, and more. The geoform component includes characteristics of the coast or seafloor’s landscape. The substrate component characterizes the non-living materials that form the seafloor (like sand) or that provide a surface for biota (like a buoy that has mussels growing on it). And finally, the biotic component classifies the living organisms in the ecosystem.

A benefit of CMECS’s structure of settings and components is that users can apply CMECS to best suit their needs.  It can be used for detailed descriptions of small areas for experimental work, for mapping the characteristics of an entire regional ecosystem, and for everything in between.  People reading scientific papers, interpreting maps, or analyzing large data sets can have clear and easily available definitions to understand the work and to compare results.

Additionally, it will be much easier to share data because CMECS allows everyone to use the same units and the same terminology. It is much easier to share and compare data when you’re using the same definitions and the same units!

Overall, with the use and application of CMECS, we will be able to improve our knowledge of marine ecosystems, while satisfying organizers everywhere.

About the authorMarguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

EPA Releases Resource to Help Guide Green Infrastructure

By Lahne Mattas-Curry

Rain barrel captures roof runoff in Santa Monica, CA. (Copyright Abby Hall, US EPA)

Rain barrel captures roof runoff in Santa Monica, CA. (Copyright Abby Hall, US EPA)

Imagine you are a municipal sewer system operator in an urban area. You probably would be well aware of the millions of gallons of untreated water that enter your combined sewer systems creating a big old mess in your local water bodies. But what if there was a cost effective solution available? And even better than low-cost, what if the solution made your community pretty and created a great community for people to live, work and play? You would jump on it, right?

Well, many communities with combined sewer overflows have been using green infrastructure – rain barrels, rain gardens, greenways, green roofs etc. – as an attractive way to reduce the stormwater runoff that goes into a sewer system. (We have blogged about it many times before.)  Green infrastructure helps reduce capital costs – traditional grey infrastructure made of pipes and other systems is often cost prohibitive – and has been shown to also reduce operational costs at publicly owned treatment works.

EPA scientists helped develop a resource guide to help more communities manage stormwater and wastewater with green infrastructure. The resource, released Greening CSO Plans: Planning and Modeling Green Infrastructure for Combined Sewer Overflow (CSO) Control (pdf),” will help communities make cost-effective decisions to maximize water quality benefits. The resource explains how to use modeling tools such as EPA’s Stormwater Management Model to optimize different combinations of green and grey infrastructure to reduce both sewer overflow volume and total number of overflow events.  The guide also has relevant case studies to showcase how different communities are using green infrastructure.

Hopefully using this resource can help you plan green infrastructure solutions and provide a variety of tools that can help you measure and reduce stormwater runoff.

For more information about green infrastructure at EPA, please visit: http://water.epa.gov/infrastructure/greeninfrastructure/index.cfm

You can also learn more about green infrastructure research and science here:

http://www2.epa.gov/water-research/green-infrastructure-research

 

About the author: Lahne Mattas-Curry works with EPA’s Safe and Sustainable Water Resources team, drinks a lot of water and  communicates water research to anyone who will listen.

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Improving Water by Removing Arsenic

By Marguerite Huber

Arsenic removal system, Twentynine Palms, CA.

Arsenic removal system, Twentynine Palms, CA.

If you lead an active and busy life like me, you probably don’t spend a lot of time thinking about what is in the water you drink. You just fill up your water bottle and are out the door.

But behind the scene a lot goes into making our water safe to drink. To protect public health, EPA regulates arsenic in drinking water. Arsenic is a semi-metal element that can enter drinking water supplies through natural deposits or from agricultural and industrial practices. Health effects due to prolonged excess exposure can include skin damage, circulatory system problems, and increased risk of cancer.

EPA initiated the Arsenic Removal Technology Demonstration Program to evaluate the performance, reliability, and cost of arsenic removal and the effect on water distribution systems. One type of arsenic removal system consists of a tank of adsorptive media that is similar to a home water softener.

As the water passes through the tank of media, the dissolved arsenic adsorbs on to surface of the media. Adsorption is not to be confused with absorption, which is the process in which a fluid is dissolved by a liquid or solid, such as water being absorbed by a sponge.

Adsorption on the other hand is the process in which atoms, ions or molecules, stick to a surface. Once the media reaches its arsenic removal capacity, the media must be replaced. Many water systems, such as the Twentynine Palms Water District in California, have experienced high operating costs due to frequent replacement of the adsorptive media.

EPA researchers partnered with Battelle to conduct lab and pilot studies to investigate the possibility of these media being reused to reduce costs. The study found that as much as 94% of the arsenic from exhausted media could be removed and the media could be regenerated.

Following the successful results of the laboratory regeneration study, EPA and Battelle demonstrated the efficiency of media regeneration in Twentynine Palms, CA. The testing led to substantial reductions in the operational cost, proving to be successful and that regeneration can work.

The goal of this research was to reduce operating costs, and since starting the regeneration program in 2010, Twentynine Palms Water district has been saving about $20,000 a year.

All in all, there is a lot of science and technology that bring you the clean water in your water bottle.  I’m now going to stop and appreciate that each time I fill up my water bottle.

About the authorMarguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.