phosphorus

Saving the Planet from Too Much Man Made Nitrogen

By Kristina Heinemann

Planetary Boundaries: A Safe Operating Space for Humanity, Stockholm Resilience Centre, Stockholm University (http://www.stockholmresilience.org/)

Planetary Boundaries: A Safe Operating Space for Humanity, Stockholm Resilience Centre, Stockholm University (http://www.stockholmresilience.org/)

Environmental sustainability is all the rage right now. Much of the focus when talking about sustainability is on the global carbon cycle and climate change, but there are other global cycles that have been disturbed to an even greater extent than the carbon cycle. Since the Industrial Revolution biogeochemical flows of nitrogen and phosphorus or the Earth’s nitrogen and phosphorus cycles have been disrupted even more than the carbon cycle.   Biogeochemical flows of nitrogen and phosphorous is a scientific way of talking about the pathways and interactions the elements nitrogen and phosphorus have with the physical and biological world.  Human beings have altered these pathways and systems dramatically to the point that we and the planet are at great risk.  You can see this represented in the figure above – we are clearly in the “red zone” when it comes to disturbance of nitrogen and phosphorous cycles!

One dramatic consequence of too much nitrogen – the Peconic River Fish Kill, Riverhead (NY) Yacht Club, June 15, 2015 Photo credit: Andrew Seal

One dramatic consequence of too much nitrogen – the Peconic River Fish Kill, Riverhead (NY) Yacht Club, June 15, 2015 Photo credit: Andrew Seal

One important source of “too much nitrogen” in the coastal areas of our Region — New York, New Jersey, and the Caribbean — are conventional onsite wastewater disposal or septic systems many of which were never designed to remove or reduce nitrogen.  We face a serious need to upgrade many of these systems to technologies that will reduce nitrogen flow to our estuaries and coastal ecosystems.

Being SepticSmart Also Means Using Appropriate and Well Designed Septic Technology To Protect Water Quality

Being SepticSmart Also Means Using Appropriate and Well Designed Septic Technology To Protect Water Quality

SepticSmart Week, which kicks off this year on Sept. 21, will educate public officials and the public at large about the importance of using well designed and appropriate septic treatment technology that is protective of water quality.  Advanced onsite treatment systems can remove as much as 74 percent of nitrogen before it enters the environment.  Part of my job at EPA is to help state and local governments meet this need.  As an example Suffolk County, New York declared nitrogen public enemy #1 and launched an advanced treatment septic demonstration program to install and test nitrogen removal systems on almost 20 residential properties throughout the County.

EPA, in cooperation with states and partners, works hard during SepticSmart Week and year-round to educate local decision makers, engineers and homeowners about managing and upgrading their wastewater infrastructure in order to protect the waters they swim in, fish from, and drink. (By the way this also happens to be National Estuaries Week – take a look at all the great resources aimed at restoring estuaries like the Long Island Sound, Peconic Bay, the New York – New Jersey Harbor, Barnegat Bay, Delaware Estuary, and San Juan Bay in Puerto Rico at: https://www.estuaries.org/national-estuaries-week !)

About the Author: Kristina Heinemann is EPA Region 2’s Decentralized Wastewater Treatment Coordinator and lives on Long Island’s North Shore where she is the not-so-proud owner of two antiquated cesspools one of which often acts more like a holding tank than a wastewater disposal system!   

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action, and EPA does not verify the accuracy or science of the contents of the blog.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Nutrient Management: Always on My Mind

By James R. Mihelcic, PhD, BCEEM

EPA-grantee and guest blogger James R. Mihelcic

EPA-grantee and guest blogger James R. Mihelcic

I am inspired to solve the complex problem of nutrient (nitrogen and phosphorus) management every day.  I think about solving this problem when I tend my winter garden of lettuce and peppers, around my neighborhood as I watch stormwater race from lawns to the Hillsborough River, in the classroom, and when I spend time outdoors enjoying our nation’s waters.

And I am in good company with my thoughts. You see, the National Academy of Engineering has identified managing the nitrogen cycle as one of their Grand Challenges.

I even started my New Year by canoeing in the Chassahowitzka National Wildlife Refuge and got to thinking about nutrients.  This was because some of the springs that feed the refuge have developed the tell-tale signs of nutrient pollution (green, slimy-looking plant growth) from on-site wastewater generation and lawn runoff from surrounding homes.  On that day we were also welcomed into the winter home of a group of manatees.  Manatees depend on sea grass for survival, and excessive nutrients cloud coastal waters, preventing sea grass growth. 

With support from an EPA Science to Achieve Results (STAR) grant, we established our Center for Reinventing Aging Infrastructure for Nutrient Management, which is transforming my daily thinking to everyday reality.  We are reimagining aging coastal urban infrastructure systems to consider nutrient recovery and management that contribute to sustainable and healthy communities.

Manatee at a U.S. Wildlife Refuge, Florida. Image courtesy of U.S. Fish and Wildlife Service.

Manatee at a U.S. Wildlife Refuge, Florida. Image courtesy of U.S. Fish and Wildlife Service.

I have great expectations for our Center research and demonstrations.  Our goals are to develop the science behind new technology and management innovations, and to develop a deep understanding of integrated systems.  We will demonstrate and assess innovations to provide new knowledge for students, community members, practitioners, and other stakeholders.

We are even transforming how we educate new engineers. For example, our new textbook, Environmental Engineering: Fundamentals, Sustainability, Design integrates sustainability and nutrient concepts into every chapter, and has the potential to reach over 10,000 undergraduate engineers every year.

Our research will benefit the public because poor water quality lowers the economic, social, and environmental value of our nation’s waters for current and future generations. 

In Florida, our springs, rivers, estuaries, coastal waters, and the Everglades all suffer because of nutrient pollution.  We have already come up with some ways to help manage nutrient pollution while also meeting the agricultural needs to provide national and global food security. For example, we have shown that 22% of the global demand for phosphorus could be met if we just recovered this valuable resource from domestic wastewater. We’ve also shown how wastewater infrastructure that serves a rapidly urbanizing world can be integrated with recovery of valuable water and nutrients to improve food security.

You can see why nutrients are always on my mind.  I hope they are now on yours.

About the author: EPA-grantee and guest blogger James R. Mihelcic is a Professor of Civil & Environmental Engineering and State of Florida 21st Century World Class Scholar at the University of South Florida (Tampa), where he directs the Center for Reinventing Aging Infrastructure for Nutrient Management

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.