Environmental Technology Innovation Clusters

Water Monitoring Innovation Thrives in Clusters

By Ryan Connair

close up of waterfallThis year’s National Water Quality Monitoring Conference is being held this week in Cincinnati, Ohio. The conference will bring together hundreds of professionals from the water industry to talk about water quality monitoring and share information about new monitoring approaches and technologies.

Cincinnati is a perfect venue for a conference on water monitoring. Not only is it home to the largest federal water research facility, it also serves as the hub of the water technology cluster Confluence. Covering the Ohio River Valley (southwest Ohio, northern Kentucky, and southeast Indiana), Confluence “stems from an EPA initiative that recognizes the importance of harnessing regional expertise to encourage economic development, and environmental and human health protection,” according to its website.

Confluence’s goal is to connect water researchers, businesses, universities, and others in the region to exchange ideas and forge partnerships. The result is more innovative water technologies, including new monitoring technologies.

Here are a few of the water quality monitoring projects flowing from Confluence members:

  • The University of Cincinnati is working to establish a Miami Valley Groundwater Observatory. The Observatory would consist of a series of monitoring wells in the Great Miami Buried Valley Aquifer System. The wells will serve as a testbed for real-time, wireless water quality sensors. The data collected by the sensors will be useful for modeling groundwater conditions in aquifers and similar water sources across the country.
  • EPA is working with local startup Urbanalta Technologies and the Metropolitan Sewer District of Greater Cincinnati (MSDGC) to develop novel sewer flow sensors that can measure flow during heavy rains, helping to pinpoint the locations of combined sewer overflows.
  • MSDGC, Northern Kentucky Sanitation District 1 (NKSD1), and the consulting firm Stantec worked with EPA on an InnoCentive challenge on sensors for combined sewer overflows. Both sewer districts have expressed interest in testing the winning technologies—which will be featured in our next blog post tomorrow morning.
  • University of Cincinnati graduate student Jacob Shidler has started a company, Liquid, to continue developing an app that will let scientists enter water quality data on the spot and upload it to the cloud. His app will make it easier for many people to contribute to a single data set, empowering citizen scientists.

These are only a few examples of the innovative water quality monitoring work coming out of Confluence—and it isn’t the only water technology cluster in the United States. EPA is currently working with more than a dozen water cluster initiatives across the country. We’re excited to see what else they come up with!

About the Author: Ryan Connair supports EPA’s Environmental Technology Innovation Clusters program and works closely with Cincinnati’s Confluence.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Challenges and Combined Sewer Overflows

By Ryan Connair

sewer overflowing

Overflows happen when combined sewers are overwhelmed by heavy rain.

Every year, combined sewer overflows (CSOs) release about 850 billion gallons of untreated sewage and stormwater into lakes, streams, and rivers across the United States. CSOs happen when combined sewers—which carry both stormwater and raw sewage—are overwhelmed by heavy rain and flow into local waterways.

Unfortunately, this situation is hard to fix. Sewer utilities have thousands of miles of pipes to manage, so they often lack the resources to continuously monitor CSO activity or precisely measure how much wastewater is being discharged into the environment.  A low-cost, wireless sensor could change all that, though.

To find such a sensor, EPA partnered with Confluence—a water technology cluster in the southwest Ohio, northern Kentucky, and southeast Indiana area—to issue an open innovation challenge. Open innovation challenges offer awards for solutions that address a problem and draw in the best ideas from around the world.

The challenge was issued in July 2013 through Cincinnati Innovates and InnoCentive, who recently announced the winners.

First prize of $6,000 was awarded to Krishna Priya, from India, with prizes of $2,000 each going to Tamus Szalay (USA) and Andre Villemaire (Canada). Priya’s winning solution combined water level and ultrasonic sensors with a cellphone radio to create a prototype device that monitors water level and flow. During a CSO event, the system can send data back to utilities via text message.

“Real-time information provides the ability to plan for the events, respond quickly to equipment malfunction, and assure control systems are operating properly,” said Melissa Gatterdam, Superintendent of Watershed Operations at the Metropolitan Sewer District of Greater Cincinnati (MSDGC).

But the challenge goes beyond identifying a winning idea, it also involves a community. In this case, the community is Greater Cincinnati. Two local utilities—MSDGC and Sanitation District No. 1 of Northern Kentucky (SD1)—and a local branch of the technical consulting firm Stantec provided judges for the contest. The two utilities have expressed interest in testing the prize-winning ideas identified by the competition.

“EPA has displayed exceptional leadership with this challenge, which has catalyzed the difficult process of transferring new ideas into new technologies that are ready for the marketplace,” said Chris Kaeff, Regulatory Reporting and Wet Weather Coordinator for SD1.

“The public utility stands to gain new technology that improves operational efficiency,” Kaeff said. “The entrepreneur gains a pathway to impact the market. The venture capitalist gains an opportunity for investment. And the federal regulatory and research agency moves closer to its goal of ensuring compliance.”

Partnering to issue the challenge, EPA was able to accomplish two goals: the challenge identified a solution to a pressing environmental issue and connected the winners to utilities who can put their ideas into practice by serving as test beds for the technology and potential buyers in the market for the finished solution.

About the author: Ryan Connair works with EPA’s Environmental Technology Innovation Clusters Program as a communications contractor.

Editor’s Note:

Read more about EPA research exploring ways to reduce stormwater runoff and combined sewer overflows:

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.