A New Beginning: Headwater Research

By Marguerite Huber

I like beginnings. They are a fresh start and influence our lives further down the road. Just like how we have new beginnings, all rivers have influential beginnings too. In a network of rivers up in the mountains, headwater streams are the uppermost streams furthest from the river’s endpoint or merger with another stream. They are the very beginning of miles and miles of rivers and have a great impact on what flows downstream.headwaterstream

Headwater streams and their catchments, or drainage basins, are necessary for the maintenance of healthy and productive streams and rivers. Headwater catchments also provide numerous ecosystem services to humans and the surrounding environment. These benefits include biodiversity, climate regulation, recreation, timber and crop production, and water supply and purification.

EPA researchers studied the importance of headwater catchments by focusing on the quantity and value of a few ecosystem services, and then projected that importance from a regional to national scale. They focused on three ecosystem services (water supply, climate regulation, and water purification) for 568 headwater streams and their catchments.

To assess the potential economic value of headwater catchments’ ecosystem services, researchers used published economic value estimates based on commodity price (water supply), market value (climate regulation), and damage cost avoidance (water purification).

They found the economic value of each ecosystem service as follows:

  • $470,000 – The average yearly value of water supplied through each headwater catchment.
  • $553, 000 – The average yearly value of climate regulation (through carbon sequestration) of each headwater catchment.
  • $29,759,000 – The average yearly value of improving water quality by reducing nutrient pollution.

Overall, the weighted average economic value for headwater catchments in the United States was $31 million per year per catchment. It is essential to note that the national importance of headwater catchments is even higher since the 568 catchments studied are only a statistical representation of the more than 2 million headwater catchments in the continental United States. I think it’s safe to say these beginnings provide some serious benefits!

About the authorMarguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Take Cover! (With Vegetation)

By Marguerite Huberbuffer

Take cover!

It’s a phrase you yell to protect against something headed your way. But did you ever think that phrase could be applied to pollutants? Well, it can – vegetative cover acts as a defense against non-point source (NPS) pollutants, protecting our lakes, streams, and water bodies.

Vegetative filter strips and riparian buffers  are conservation practices that help control the amount of sediment and chemicals that are transported from agricultural fields into water bodies. They slow down the speed of runoff and capture nutrients, keep more nutrient-rich topsoil on farmers’ fields, and reduces impacts on downstream ecosystems.

To improve water quality in large watersheds, conservation managers need to know what the problems are, where the pollutants originate, and what conservation practices work best.  However, investigating all of these factors at the watershed-wide level is a very difficult and complex task. This is why EPA is working with partners to supplement an existing watershed simulation model to estimate the efficiency of riparian buffers.

USDA’s watershed simulation model, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS), is used to evaluate the effect of farming and conservation practices on pollutants and help decide where to put these practices.  AnnAGNPS also predicts the origin and tracks the movement of water, sediment, and chemicals to any location in the watershed.

To supplement this model, researchers from EPA, USDA, and Middle Tennessee State University developed a Geographic Information Systems–based technology that estimates the efficiency of buffers in reducing sediment loads at a watershed scale.

With the addition of this AGNPS Buffer Utility Feature  technology to the USDA model, researchers and watershed conservation managers can evaluate the placement of riparian buffers, track pollution loads to their source, and assess water quality and ecosystem services improvements across their watersheds.

Riparian buffers and other vegetative cover, such as filter strips, are considered an important, effective, and efficient conservation practice that has been shown to protect ecosystem services at a local level. However, their full impact on a watershed-scale is still subject to ongoing research.

 

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Helping Cleveland Communities

By Marguerite Huber

Vacant lot with dug out section for a rain garden; rest of the area covered with straw to prevent erosion.

Turning a vacant lot into a rain garden.

EPA researchers are turning vacant lots in Cleveland, Ohio into field research sites for exploring the effectiveness of tapping green infrastructure (GI) techniques for reducing stormwater runoff and improving local waterways.

Over the last few years, the research has focused on the feasibility of re-using land left vacant after home demolition to answer questions such as: does the lot have soil that can absorb excess stormwater runoff? Can it provide ecosystem services? And how does the re-use of the lot benefit the local community?

To find out, the researchers initially looked at tree cover, the amount of rubble left after demolition, and ease of water movement on the lot. The cost of preparing the lot for re-use was dependant on the type and quality of demolition.

This research then paved the way for additional projects where EPA researchers have been studying stormwater management through GI installations, such as rain gardens and bioswales, in the vacant lots of Cleveland’s Historic Slavic Village neighborhood.

An ORISE fellow working on the project, Olivia Green, says “green infrastructure allows us to invest in natural capital and nature’s ability to absorb and redistribute stormwater. If we tap into natural capital and ecosystem services, we could manage stormwater to a high degree of quality for potentially less cost.”

Green and her colleagues are gathering baseline hydrologic and ecosystem services data. They will then use this data to collaborate with the neighborhood on a plan to use GI elements throughout the community. With continual monitoring, researchers can estimate the impact of GI implementation and identify where modifications need to be made.

Through the research, scientists hope to find a way to reduce stormwater volume, increase habitats for bees and other pollinators, and increase ecosystem services. But the data is starting to show that local streams and watersheds aren’t the only elements reaping the rewards. Reductions in violent crime and increasing property values have been recorded in the same neighborhoods where green space has replaced former abandoned, unattractive lots.

“We may create a culture that is more connected with the environment in the long term,” Green explains. The results of the research will not just benefit the residents of Cleveland, but could ultimately benefit communities everywhere, inducing a national culture that is more in tune with our environment.

About the author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Researching and Restoring the Gulf

By Marguerite Huber

Hypoxia sounds like some sort of deadly disease. While it is not a disease, it is in fact deadly. Also referred to as dead zones, hypoxic water kills bottom-dwelling marine life such as crabs and mussels. (To learn more, see the video at the end of this blog.)

Dead zones lack dissolved oxygen and are caused primarily by excess nutrients such as nitrogen and phosphorous. Too many nutrients cause algae and plankton to grow in large numbers, and as the algae die and decompose, oxygen is consumed.

Excess nutrients are especially a problem in the Gulf of Mexico. Every summer, nutrient-rich freshwater from the Mississippi River flows into the Gulf, resulting in a dead zone of about 7,772 sq. mi. that causes massive fish kills and chases other creatures further out to sea.

In an effort to understand this annual occurrence, EPA researchers have developed a modeling framework for predicting how nutrient management decisions and future climate change scenarios will impact the size, frequency, and duration of hypoxic conditions that form in the Gulf of Mexico every summer.

Providing 17% of the Nation’s gross domestic product, the natural resources of the Gulf’s coastal and marine habitats and their ecosystem services are critical to both the regional and national economy. That’s a major reason why EPA researchers are exploring ways to improve and restore Gulf water quality and aquatic habitats.

Since the 1990’s, the Agency and its partners from coastal states have been monitoring estuaries and most recently, wetlands. This baseline came in handy in the aftermath of Hurricane Katrina and the BP oil spill, and it will continue to help researchers track the degree of recovery resulting from ongoing and future restoration actions in the Gulf.

Monitoring in the future will also help inform environmental management decisions by addressing linkages between ecosystem condition and the goods and services provided. Agency researchers have several methodologies in development for examining these linkages, including spatial analysis tools, and human well-being indices.

About the AuthorMarguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Challenges and Combined Sewer Overflows

By Ryan Connair

sewer overflowing

Overflows happen when combined sewers are overwhelmed by heavy rain.

Every year, combined sewer overflows (CSOs) release about 850 billion gallons of untreated sewage and stormwater into lakes, streams, and rivers across the United States. CSOs happen when combined sewers—which carry both stormwater and raw sewage—are overwhelmed by heavy rain and flow into local waterways.

Unfortunately, this situation is hard to fix. Sewer utilities have thousands of miles of pipes to manage, so they often lack the resources to continuously monitor CSO activity or precisely measure how much wastewater is being discharged into the environment.  A low-cost, wireless sensor could change all that, though.

To find such a sensor, EPA partnered with Confluence—a water technology cluster in the southwest Ohio, northern Kentucky, and southeast Indiana area—to issue an open innovation challenge. Open innovation challenges offer awards for solutions that address a problem and draw in the best ideas from around the world.

The challenge was issued in July 2013 through Cincinnati Innovates and InnoCentive, who recently announced the winners.

First prize of $6,000 was awarded to Krishna Priya, from India, with prizes of $2,000 each going to Tamus Szalay (USA) and Andre Villemaire (Canada). Priya’s winning solution combined water level and ultrasonic sensors with a cellphone radio to create a prototype device that monitors water level and flow. During a CSO event, the system can send data back to utilities via text message.

“Real-time information provides the ability to plan for the events, respond quickly to equipment malfunction, and assure control systems are operating properly,” said Melissa Gatterdam, Superintendent of Watershed Operations at the Metropolitan Sewer District of Greater Cincinnati (MSDGC).

But the challenge goes beyond identifying a winning idea, it also involves a community. In this case, the community is Greater Cincinnati. Two local utilities—MSDGC and Sanitation District No. 1 of Northern Kentucky (SD1)—and a local branch of the technical consulting firm Stantec provided judges for the contest. The two utilities have expressed interest in testing the prize-winning ideas identified by the competition.

“EPA has displayed exceptional leadership with this challenge, which has catalyzed the difficult process of transferring new ideas into new technologies that are ready for the marketplace,” said Chris Kaeff, Regulatory Reporting and Wet Weather Coordinator for SD1.

“The public utility stands to gain new technology that improves operational efficiency,” Kaeff said. “The entrepreneur gains a pathway to impact the market. The venture capitalist gains an opportunity for investment. And the federal regulatory and research agency moves closer to its goal of ensuring compliance.”

Partnering to issue the challenge, EPA was able to accomplish two goals: the challenge identified a solution to a pressing environmental issue and connected the winners to utilities who can put their ideas into practice by serving as test beds for the technology and potential buyers in the market for the finished solution.

About the author: Ryan Connair works with EPA’s Environmental Technology Innovation Clusters Program as a communications contractor.

Editor’s Note:

Read more about EPA research exploring ways to reduce stormwater runoff and combined sewer overflows:

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Calculating the Future with Green Infrastructure

Reposted from EPA Connect, the Official Blog of EPA Leadership

By  

 

NCSE - Gina - 3

EPA Administrator Gina McCarthy speaking at the National Council for
Science
and the Environment. Photo credit: John Mcshane

In his State of the Union address, President Obama said “the nation that goes all-in on innovation today will own the global economy tomorrow.” He made the point that science and research are critical to keeping that competitive edge—but also to protecting our public health and our environment. I couldn’t agree more.

Science has always been at the heart of our mission at EPA. In the State of the Union address, President Obama doubled down on his commitment to using science to address a changing climate and carry out his Climate Action Plan—which aims to curb carbon pollution, build climate resilience in our towns and cities, and lead the world to a sustainable, clean energy future.

EPA science is critical to each part of the plan—and one of those ways is through our newly updated National Stormwater Calculator to help build climate resilience in our towns and cities.

Read the rest of the post…

 

 

 

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

A High-Tech Approach to Watershed Management

By Marguerite Huber

Close-up-of-waterfallTechnology amazes me.  It seems like every day new technologies are being developed, and we are suddenly able to do things faster and easier.  And I am not just talking about the latest smartphone or app, but a new tool created by EPA scientists, too!

EPA researchers studying green infrastructure (using vegetation, soil, and other naturalistic techniques to reduce stormwater runoff) collaborated with colleagues in the Agency’s New England office (EPA Region 1) to develop a new public-domain software app called the Watershed Management Optimization Support Tool (WMOST).

The goal of the tool is to help water resource managers and planners identify cost effective, sustainable green infrastructure options for their local jurisdictions. After users enter information about their watershed, water utility infrastructure and constraints related to management objectives, the tool will identify the optimal (lowest cost) long-term solution.

EPA scientist Naomi Detenbeck, who has been working on the tool for the past two years, describes WMOST as “a user-friendly tool that allows communities to meet their water use needs in the most cost effective manner.” It can even be used to evaluate land use and climate change scenarios!

WMOST can easily evaluate more than twenty potential management practices and goals related to water supply, such as surface water storage and non-potable water reuse. The tool requires some specific community inputs such as watershed characteristics and management goals. With this information, WMOST can simply calculate the optimal solution.

Local water resources managers, such as municipal water works managers and consultants, can use WMOST to evaluate projects related to stormwater, water supply, wastewater and more.  At this time, it is designed for small watersheds, single communities, or multiple communities within a small watershed.

Detenbeck explains that WMOST will help communities complete a more comprehensive evaluation of watershed management issues. It will also allow communities to look holistically across their stormwater, wastewater, and drinking water programs.

Some of our favorite technologies, such as our smartphone or tablet, provide us with instant gratification and updates. On the other hand, technologies like WMOST are more focused on the long run. Results may not be instantaneous, but in time they will provide a meaningful environmental impact that all of us will get to benefit from.

The WMOST download can be found here.

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Braving the Weather to Promote Green Infrastructure in Philadelphia

Reposted from “EPA Connect, the official blog of EPA’s leadership

 

CEQ Chair and EPA Deputy Administrator brave the snow.

Council on Environmental Quality Chair Nancy Sutley and EPA Deputy Administrator Bob Perciasepe brave the snow in Philadelphia.

 

By Bob Perciasepe 

Yesterday, I was up in Philadelphia joined by CEQ Chair Nancy Sutley and Mayor Nutter to announce nearly $5 million in EPA grants made possible through the Science to Achieve Results (STAR) program. These investments are going to five universities, and aim to fill gaps in research evaluating the costs and benefits of certain green infrastructure practices.

The projects to be invested in, led by Temple University, Villanova University, Swarthmore College, University of Pennsylvania and University of New Hampshire, will explore the financial and social costs and benefits associated with green infrastructure as a stormwater and wet weather pollution management tool.

read more…

 

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Street Trees: More than Meets the Eye

By Marguerite Huber

Tree-lined street

There is more to street trees than meets the eye.

Ever since I took an urban forestry course in graduate school, I can’t help but always look at trees. I look at their bark, their roots, and their leaves. But when I look at trees, I am not just seeing their physical attributes. I also see all the conceptual benefits they provide to our communities.

Trees are not just a pretty fixture in your backyard. They provide many ecosystem services to our cities and towns, including: improving air quality, absorbing and storing carbon, supplying privacy, reducing noise, increasing property value, and decreasing building energy use. Trees are an important aspect of the green infrastructure that helps reduce storm water flow.

Amazingly, you don’t have to be an arborist to calculate tree benefits; you can use i-Tree, a USDA Forest Service model that uses sampling data to estimate street tree benefits.

In the fall of 2013, EPA scientists began research on “street trees” (trees growing in the public right-of-way, usually in between the street and the sidewalk) in nine communities in the Cincinnati, Ohio metropolitan area. The randomly selected communities all differ in geographic setting, socioeconomic characteristics, and street tree management practices.

Their research aims to answer such questions as: Can street tree structure and benefits be explained by management practices, socioeconomic conditions, or historical or geographic factors? How might invasive pests affect street trees and their benefits? How will existing street tree structure and benefits change in the future under various scenarios of tree growth and mortality, management practices, and pest outbreaks?

Researchers sampled more than 53 miles of street right-of-way along more than 600 street segments and inventoried nearly 3,000 trees. The street tree benefits were estimated using i-Tree Streets.

At this time researchers are still analyzing street tree benefits and their relation to community characteristics such as management practices, socioeconomics, and geographic setting. So far they have found management practices to be particularly important, with Tree City USA participants gaining greater benefits than communities that do not participate. Since analyses are still continuing, the findings on the other community characteristics will be released in the coming months.

When the project is completed, the researchers will have deliverables such as street tree inventory data that can be shared with community officials and an understanding of which community characteristics influence street tree structure and ecosystem services.

I invite you to check out i-Tree for yourself; I suspect as you’ll realize there are more to street trees than meets the eye.

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Waste to Value: EPA’s Role in Advancing Science and Business

Electrogenic bioreactor containing "Bactobots" and wastewater.

Electrogenic bioreactor containing “Bactobots” and wastewater.

By Marguerite Huber

In case you missed it in the news, a New-York-based micro-robotics firm, Tauriga, acquired Cincinnati-based Pilus Energy last month. In the business world, acquisitions and mergers happen all the time, but I bet you are wondering what makes this one significant to the EPA?

Tauriga CEO, Seth M. Shaw describes Pilus Energy’s technology as “extraordinary.” What makes it so is that Pilus Energy operates with the goal of turning waste into value, turning sewage into electricity to power approximately 275 million homes a year!

Their innovative technology claims to transform dirty, wastewater into electricity, as well as clean water, and other valuable biogases and chemicals. The secret to this venture is the help of genetically enhanced bacteria, given the more affectionate name of “Bactobots.”

“Essentially we are mining wastewater for valuable resources similarly to gold mining companies mining ore for gold,” Shaw confides.

Now this is where the EPA comes in.

Dr. Vasudevan Namboodiri, an EPA scientist with 20 years of research and development experience, explains that EPA and Pilus are investigating the potential for Pilus Energy technology in the water industry.

With EPA’s technical oversight, Pilus Energy’s goal is to eventually build an industrial pilot-scale prototype.  This type of technology is still in its infancy and will be many years away from large scale production, Dr. Namboodiri explained.

Large- scale usage of the technology could possibly be revolutionary, and provide great benefits in the future. Tauriga CEO Shaw notes that, “There is an enormous global need to maximize all resources available, due to population growth and energy costs.” If applied to whole communities in both developing and developed countries, there could be major benefits such as:

  • Reduced wastewater treatment costs
  • Creation of a renewable energy source
  • Valuable chemical byproducts that could be used towards renewable products
  • Higher quality water for both drinking and recreation
  • Healthier food due to less contaminates in soil
  • Improved ecosystem benefits or services and biodiversity if applied in an entire watershed

Even though the large scale benefits will likely not be seen until years from now, the partnership between Pilus Energy and the EPA helps support EPA’s mission of protecting human health and the environment.

About the Author: Marguerite Huber is a Student Services Contractor with EPA’s Science Communications Team.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.