Visualizing the Invisible with the My Air, My Health Challenge Winners

By Dustin Renwick

My Air, My Health BannerWhen you win an award, it’s easy to lose sight of the small victories that brought you to a successful finish.

Members of the Conscious Clothing team – winner of the EPA/HHS My Air, My Health Challenge – almost didn’t apply for the challenge.

A friend told team leader Gabrielle Dockterman about the InnoCentive website, a crowdsourcing and open innovation platform. Dockterman said she felt there might be a challenge that would tap into the talents of people she knew. She emailed her friend Dot Kelly, a chemist, and inventor David Kuller, her boss from a previous job.

They stumbled on the My Air, My Health Challenge eight days before the deadline for proposals.

Kuller says that fortunately, all three team members were between projects and at stages in their lives when they could commit to the opportunity.

Eight days later, they submitted their entry just before midnight.

Dot Kelly, David Kuller, and Gabrielle Savage

Dot Kelly, David Kuller, and Gabrielle Dockterman

Using Skype to stay connected across the country and the world, the team explored options for building a prototype that could account for both air pollution and related health metrics, such heart rate or breathing.

On top of that, they had to create a system that could be easily worn or carried.

“It was like being a little kid with Legos,” Kuller said.

The team’s design incorporates an open-source Arduino platform microcomputer that lies against the chest and a particulate matter air sensor that hangs near the neck. The system takes advantage of the common place where men and women typically wear ties, necklaces or other fashion accessories.

Stretchy strips of silver-knitted yarn wrap around the wearer’s ribcage to measure breathing. The integrated system gives wearers an estimate of their pollution exposure by comparing the air quality to how deeply the person breathes.

The data are streamed to any Bluetooth-enabled device, such as a cellphone, and LED lights transform the sensor measurements into visual cues, what the team calls “making the invisible visible.”

Dockterman says the group will next focus on tailoring prototypes for several different applications: consumer athletics, sleep apnea research and children’s asthma research.

Built in large batches, the Conscious Clothing sensor system could cost as little as $20 and could be sewn directly into clothing. The design represents the continuing shift to next-generation sensors that cost less, are easier to use, and can be applied to many different fields.

“I’d like to think we’re going to bridge what could have been a 20-year development gap,” Kelly said.

About the author: Dustin Renwick works as part of the innovation team in the EPA Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

The Palm-Sized Wonder that Brings Life to Village Green

By Vasu Kilaru and Gayle Hagler, Ph.D.

The petite 'electronics sandwich' at the heart of the Village Green system - an Arduino board on the bottom with layers of other accessory electronic boards stacked on top.

Welcome back to the Village Green Project, an ongoing EPA research, development and demonstration project to build a solar-powered station to measure air pollutants.

This innovative new measurement system must: collect and send data; use minimal power; monitor instrument performance; and have remote on-and-off capabilities for several components to match changing conditions (off for dark and cloudy days, and then on again when the sun starts to shine).

The team searched far and wide for an on-board computer that would serve as the “brains” of the Village Green System. The computer needed to run on very little power, be flexible enough to handle all of our requirements, and ideally work using a free, publically available (“open source”) computer program.

We discovered Arduino—a microcontroller that is essentially a simple computer with an accompanying free programming tool. A wide group of people, including artists, designers and hobbyists, are already using it to build electronics like homemade clocks or robots. It works perfectly for our needs because it uses very low power and can fit in your hand.

A number of accessory electronic items allow the small circuit board to meet the requirements of the system. For example, one accessory adds a timestamp to the data being collected so anyone viewing it can see the amount of air pollutants measured at a particular time and day. Another accessory links the Arduino board with a cellular modem (similar to the “data” port of a cellphone), which then sends recorded air pollution data to our on-line database. These accessories are electronic boards that stack on top of the main Arduino board, making what looks like an electronics sandwich.

With a free programming tool available to the Arduino-user community, we are developing a custom computer program for the Village Green System—nearly 800 lines of code and counting.

So far, so good! Recently, North Carolina experienced several days of cloudy, overcast weather. The trusty Arduino board successfully handled the decrease in power—turning off several instruments during that time and then efficiently restarting them once the sun came back out.

About the Authors: Gayle Hagler is an environmental engineer who studies air pollutant emissions and measurement technologies. Vasu Kilaru works in EPA’s Office of Research and Development. He is currently working on the apps and sensors for air pollution initiative (ASAP) helping the Agency develop its strategic role and response to new sensor technology developments.

Note: Mention of trade names or commercial products do not constitute endorsement, certification or recommendation for use.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.