air research

Bringing EPA Research—and Confidence—to the Classroom

By Dana Buchbinder

As an undercover introvert I never imagined myself returning to the chaos of middle school, but this spring I took a deep breath and plunged in. For ten Wednesdays I co-taught an afterschool air science apprenticeship for sixth and seventh graders in Durham, North Carolina. The curriculum, “Making Sense of Air Quality,” was developed and taught by two EPA researchers who have volunteered for the past three years with a not-for-profit educational organization.

Students demonstrate air pollution sensors

Making Sense of Air Quality: students demonstrate the air quality sensors they built.

I joined the ranks of these EPA “Citizen Teachers” to help close the opportunity gap in education. The public middle school where we taught serves students from low income families, with 84% of students eligible for free or reduced lunch programs. 15 students participated in our apprenticeship to learn career skills and become air science experts at their school.

At first it was challenging to relax in front of a room of squirmy kids, but I was surprised by how quickly I adapted to students’ needs. Lessons don’t always go as planned (okay, almost never), but patient teaching in hectic moments inspires students to become more observant scientists. When I could step back and appreciate the weekly progress, I recognized the class’s accomplishments.

The students built air sensors from kits an EPA researcher created for outreach. None of the middle schoolers knew electrical engineering or computer programming when we began, but they learned the foundations of these skills in just a few weeks. I watched one student who had struggled with air pollution vocabulary build a working air sensor from a diagram. Meanwhile, his classmate formulated a hypothesis about how her sensor would react to dust in the air.

We asked students to think like environmental scientists: Where would they choose to place air sensors in a community? How could they share what they learned about air pollution?

They saw air quality sensors in action during our field trip to the Village Green Project, an EPA community air monitor at a Durham County Library. Exploring the equipment gave the apprentices more hands-on practice with science.

In addition to teaching kids about EPA air research, this spring’s apprenticeship focused on two 21st century skills: technology and communicating science. These are career tools for a host of much-needed occupations, but are also vital to advancing research for protecting human health and the environment.

We challenged students to share their new air quality knowledge creatively. They designed posters for a community Air Fair and crafted rhyming “public service announcements” to explain how EPA’s AirNow School Flag Program helps young people stay healthy.

The highlight of the apprenticeship for me was standing back as the students showcased what they learned in a scientific presentation for parents, teachers, and scientists. Nearly 300 people attended this culminating event for all the spring apprenticeships. With remarkable professionalism our class explained figures on poster displays, operated their air sensors, and quizzed the audience with an air quality game.

The guests were impressed by the students’ knowledge and caught their enthusiasm in learning about air quality. Asked if the sensor measured pollen, one student said, “oh no, that’s much too big, we are measuring very tiny particles.” Such responses exhibited scientific thinking, focus, and vastly improved understanding of air pollution.

As Citizen Teachers, we were proud to see even the shyest kids present with confidence. These students reminded me that introverts can share passionately when strongly motivated by the subject. By the end of the apprenticeship I had gained my own confidence as an educator from this young flock of scientists.

About the Author: Dana Buchbinder is a Student Services Contractor in EPA’s Office of Research and Development. She hopes you will attend the upcoming Air Sensors Workshop, where speakers in Research Triangle Park, NC will present on air quality monitoring with students.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

How Many Breaths Do You Take Each Day?

By Ann Brown

Map of U.S. with color-coded air quality index

It’s Air Quality Awareness Week!

Watching the news and the problems that some countries are having with high levels of air pollution makes me appreciate the Clean Air Act, which calls on EPA and the states to protect air quality through programs based on the latest science and technology. I am especially appreciative today, the first day of Air Quality Awareness Week.

When I joined EPA’s Office of Research and Development 16 years ago, I didn’t think much about the quality of the air I breathe. I took it for granted. It is an unlimited supply. I don’t have to pay a monthly bill for it. It is just there for the benefit of my body.

Then as I began to work with scientists and engineers conducting air research at EPA, I gained an appreciation for this precious resource.  Their research showed me why it is important to know what is in the air, how you can be exposed to any pollutants it contains, and what the related risks and health effects might be. I’ve also learned about their work on advancing control technologies to reduce air pollution. EPA scientists are working in all these areas to provide the science that can be used to protect air quality.

The average person takes between 17,280 and 23,040 breaths a day. That is a lot of breaths…and each one is an opportunity to put pollutants into your lungs and body and to increase health risks if you are exposed to air pollution. For example:

  • Research shows that air pollution is linked to health effects and disease, including heart disease and stroke. EPA is a partner in the Million Hearts initiative to educate the public, especially those with heart disease, about the dangers of air pollution to their health. You can learn more about air pollution and heart disease at www.epagov/healthyheart.
  • Air pollution can cause or worsen asthma. Extensive research links asthma to ozone, particle pollution and a host of common indoor environmental asthma triggers. Join EPA experts to discuss asthma and outdoor air pollution on a Twitter chat on May 1 at 2 p.m. (Eastern Time) on @EPALive. Use the hashtag #asthma.

Air quality awareness week is a good time to learn what you can do to protect your health and the health of your friends and family. Many resources are available to learn about air quality and how to protect your health. A good start is to use the Air Quality Index where you can get daily local air quality reports and information to protect your health from air pollution.

Scientists continue to investigate air quality to protect our health and the environment. I’m glad to be a small part of this effort. Learn more about what scientists are doing at www.epa.gov/airscience.

About the author: Ann Brown is the communications lead for EPA’s Air, Climate, and Energy Research Program.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

What Does Climate Change Have to do with Weather…and Baseball?

By Andy Miller

Nationals Park, Washington, DC

Nationals Park, Washington, DC

A question I often hear is whether a particular weather event or condition is caused by climate change, and my answer is almost always no.  You can’t say that a specific tornado, torrential downpour or 100 degree plus day is caused by climate change.

So if the answer is that the weird weather isn’t caused by climate change, then why are we so concerned?  Before we get to that, let’s remember what climate is.  Climate is the long-term average of the weather.  As has been said, “Climate is what we expect, weather is what we get.”

Climate change means that the expected weather patterns are no longer what they used to be—that is, the long-term average weather is changing.  While the climate has changed in the past, now we are seeing changes that can only be explained by the rising level of greenhouse gases caused by human activities such as burning fossil fuels and cutting down forests.

The question about whether climate change has “caused” a particular weather event is like asking whether a baseball team scored on a specific play because it has a better win-loss record than its opponent. The win-loss record doesn’t determine the outcome of an individual play, but all those individual plays determine the win-loss record.  Climate is like a team’s win-loss record—it doesn’t determine a specific weather event, but rather all the individual events determine the weather patterns that make up climate. And with climate change, it’s becoming clearer that the losses are starting to stack up against us.

If climate doesn’t determine a specific weather event, why do we often hear that climate change is affecting the weather?  What we need to remember is that this is just shorthand for what the science is really telling us.  What the science is really saying is, “higher levels of greenhouse gases in the atmosphere are trapping greater amounts of solar energy, which is causing a change in how the atmosphere and oceans circulate, the amount of moisture in the air, and the amount of ice, all of which are causing changes to weather patterns across the globe.”  That’s a lot to say, so you can see why we simply talk about climate change as the cause of these impacts.

The “impacts of climate change” (which we can use now that we know what that’s really saying) are discussed in considerable detail in the new National Climate Assessment that will be published in the coming weeks.  The assessment explains what changes we are seeing now, and what we expect to see in the coming years.  It shows why we’re concerned about climate change and its impacts. And most importantly, it explains why we need to take action now on climate change.

We are only starting to see the impacts of climate change.  To turn to our sports analogy again, it’s like we’re at the start of a new season.  It’s often hard to see which team is going to be the best after only a few games.  But as the season progresses, it will be easy to see which teams have prepared well by bringing in the best players and training hard before the season starts.

Likewise, taking action on climate change now means that we will be much better prepared to meet the challenges we face in the coming years.  EPA is taking action now on climate change, and that includes EPA’s scientists and engineers.  They are teaming up to develop the scientific information and tools that will help the nation and the world prepare a winning game plan to respond to climate change.

A team that waits to begin training until after it falls behind in the standings has no chance of winning, and waiting to act on climate change until the impacts are even worse is also a losing strategy.

About the Author: Andy Miller is the Associate Director for Climate in EPA’s Air, Climate, and Energy Research Program that conducts research to assess the impacts of a changing climate and develop the scientific information and tools to act on climate change.

Learn More! 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Reposted: How EPA Research Supports Taking Action on Climate Change

Reposted from EPA’s Connect blog, the official blog of EPA’s leadership.

By Lek Kadeli

As my EPA colleagues and I prepare to join millions of people from across the nation and around the globe to celebrate the environment on April 22, it’s a good time to remember how much we’ve accomplished together since the first Earth Day in 1970.

Forty-four years ago, it wasn’t hard to find direct evidence that our environment was in trouble. Examples of air pollution could be seen at the end of every tailpipe, and in the thick, soot-laden plumes of black smoke flowing from industrial smokestacks and local incinerators. Litter and pollution-choked streams were the norm, and disposing of raw sewage and effluent directly into waterways was standard practice. A major mid-western river famously ignited, sparking both awareness and action. The central theme of EPA’s Earth Day activities this year is Taking Action on Climate Change, echoing our commitment to meeting today’s greatest environmental challenge. And just like our predecessors did decades ago, we are supporting those actions with the best available science.

Dr. Chris Weaver, an EPA scientist currently on leave to serve as the Deputy Executive Director of U.S. Global Climate Change Research Program, explains: “EPA has a major role to play in preparing the nation for change, through its critical responsibilities for ensuring clean air, clean water, and healthy communities and ecosystems. And EPA researchers, working in partnership with their colleagues in other Federal agencies and in the broader scientific community, are at the forefront of advancing understanding of the impacts of—and responses to—climate and related global change.”

Examples of that work include:

I invite you to read more about these and other examples in the 2014 Earth Day edition of our EPA Science Matters newsletter. It features stories on how EPA researchers and their partners are supporting Agency strategies and President Obama’s Climate Action Plan.

Our amazing scientists and engineers are providing the science that decision makers, communities, and individuals need for developing strategies to protect public human health and the environment in the face of a changing climate. Thanks to them, I am confident that future Earth Day events will celebrate how we were able to take action and meet the challenges of a changing climate.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

My Air, My Health – My Experience at Health Datapalooza

Dot Kelly, a member of the winning team in the My Air, My Health challenge, recently shared a blog post on “Health Datapalooza.” It is reposted below. 

My Air, My Health graphic identifierIt was about this time last year that my colleagues and I were in the thick of preparing for the U.S. Environmental Protection Agency (EPA) and the Department of Human Health Services (HHS) My Air, My Health Challenge. The Challenge called upon innovators nationwide to design a small, low-cost sensor that integrated air quality measurements with health data such as heart rate and breathing. This was to help inform the EPA and HHS’ collective work to better understand the impacts of harmful air pollution on people’s health.

In other words, the competition called for a solution that would move us all toward a future in which powerful, affordable and portable sensors provide a rich awareness of environmental quality, moment-to-moment physiological changes, and long-term health outcomes.

Read the rest of the post.

 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Are Your Genes Making You Susceptible to Air Pollution?

 

Healthy Heart graphic identifier

 

By Ann Brown

Smoking, high-fat diets and a couch potato lifestyle are risk factors for heart disease.  Kicking the habit, changing your diet and exercising are ways to reduce those risks and enhance quality of life.

But there may be a risk factor for heart disease that is more complicated to address: our genes. Our genetic makeup that we inherit from our parents may contribute to the development of heart disease, but our genes may also play a role in how our cardiovascular system responds to air pollution.  

We all have the same set of genes, but there are subtle differences in the makeup of those genes that vary from one person to another.  These individual variations are called polymorphisms and have been shown to make some people more susceptible to things like breast cancer or diabetes. 

Research has shown that high levels of air pollution, particularly fine particles emitted by cars, trucks, factories and wildfires, can trigger heart attacks and worsen heart symptoms in people who have heart disease. But are some people with heart disease more responsive to high levels of air pollution than others because of their genes?  

EPA researchers and collaborators are investigating the contributions genes may have in the way individuals respond to air pollution exposure. The study is made possible by tapping into a unique database of genetic and clinical information called CATHGEN, developed by Duke University Medical Center. The database contains health information from nearly 10,000 volunteers, most who have been diagnosed with cardiovascular disease. 

The database is providing an opportunity for EPA and other environmental health researchers to ask whether specific genetic variations make people more susceptible to the damaging effects of air pollution on the heart. While people cannot change their genetic make-up, it is hoped that the knowledge gained from this research can one day be used by health care providers to educate their patients with heart disease. Heart patients don’t have to wait for more research to take action, however.

EPA recommends people who are more sensitive to air pollution, such as those with heart disease, take steps to reduce their exposure during times when pollution levels are higher. You can check current and forecasted air quality conditions at www.airnow.gov.

Learn more at: epa.gov/healthyheart

About the author: Ann Brown is the communications lead for EPA’s Air, Climate, and Energy Research Program.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Healthy Hearts and Clean Air: An EPA Science Story

 

Healthy Heart graphic identifier

 

Reposted from EPA Connect, the Official Blog of EPA Leadership

By Lek Kadeli

This month is American Heart Health Month. I invite you to join me in understanding how EPA scientists and their partners are learning how to better protect a group of citizens who are among the most at risk from poor air quality: those who suffer from heart and other cardiovascular diseases.

Our researchers have made important discoveries linking the impact of poor air quality on cardiovascular health. For example, EPA scientists Robert Devlin, Ph.D., and David Diaz-Sanchez and their colleagues published one of the first studies looking at the effects of ozone exposure on heart health. They discovered a link between breathing ozone and inflammation, and changes in heart rate variability, and proteins that dissolve blood clots that could be risk factors for people with heart disease.

Drs. Devlin and Diaz-Sanchez, along with EPA cardiologist Dr. Wayne Cascio, are part of an Agency effort to spread the word about the results of EPA clean air research. We will be highlighting those efforts on the Agency’s science blog, It All Starts with Science, on our science Twitter feed @EPAresearch, and elsewhere as part of our Healthy Heart Month activities.

Read the rest of the post. 

 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Something to Be Thankful For

By Kathleen Stewart

Kathleen Stewart examines a stove.

Kathleen Stewart examines a stove.

On Thanksgiving, stuffed with turkey and pie, I can summon just enough creativity to be thankful for the usual stuff—a roof over my head, food on the table, and my family’s health and happiness. I don’t tend to remember to be thankful for the modern conveniences that make all of the above possible.

This year, I am officially giving thanks for my natural gas heater. Whenever a slip of chill creeps into my drafty old house, warm nights are just a flip of a switch away. With heat so instantaneously available, it’s easy to forget that 3 billion people worldwide rely on wood, dung, charcoal, coal, and biomass (fuel derived from organic matter, usually plants) to cook for their families and warm their homes.

Even on the Navajo Nation, where high voltage transmission lines crisscross the land to bring electricity to Las Vegas, Phoenix, and Los Angeles, approximately 60% of families use coal, coke, or wood to heat their homes. About 30% of families use coal as their primary heating fuel.

In 2010, researchers from the U.S. Geological Survey and Dine College (the Navajo Nation’s institute of higher education) surveyed 137 homes in the Navajo town of Shiprock, NM. In this town, with average December/January lows of 19 degrees Fahrenheit, the researchers found that 77% of the homes used stoves primarily for heating, and 25% of families burned coal for heat in stoves that were not specifically designed for coal. They also found that 26% of the stoves were ten or more years old.

Navajo town of Shiprock, NM

Navajo town of Shiprock, NM

The researchers noted that many of the stoves were improperly vented, with visible cracks in the chimneys, or no chimney at all.

The indoor smoke poses serious health risks, particularly for children and the elderly, but there is no easy solution. There are no EPA certified coal stoves, and most newer coal stoves are designed to burn cleaner-burning anthracite coal, not the types (bituminous and subbituminous) available—cheap or free—on the Navajo Nation. With a median household income of $20,000 and limited existing infrastructure, gas and electricity are generally too costly.

That’s why we and our EPA colleagues have teamed up with partners at Dine College to identify and research heating options that will reduce exposure to coal smoke from home heating on the Navajo Nation. The end result will help provide stakeholders with an understanding of the best alternatives to reduce health and environmental impacts from home heating—alternatives that are technically, economically, and culturally feasible.

Last night I fell asleep curled around my home’s heater vent after the kids went to bed. I crave being warm like a snail craves its shell. In fact, I am actually allergic to being cold. Look that allergy up and then be thankful for two new things this Thanksgiving.

Learn more about EPA research and programs on how to heat your home while minimizing the health impacts:

 

About the Author: Environmental scientist Kathleen Stewart helps concerned communities understand risks from indoor and outdoor air pollution. For this project, she is working with Agency research scientist Paul Solomon, who has extensive experience developing ways to measure particulate matter in the air, and to better understand the relationships between air pollution sources and exposure risks.

 

 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

EPA’s Continuing Effort to Reduce Lead Exposure

Three images in a line: child and adult hands together, lake shore, lead from periodic table.By Ellen Kirrane

As a kid growing up in the 1970s, I can remember my mom pulling up to the filling station and asking for “regular” gasoline.  At the time, I didn’t realize what this meant, but as I got older I found out that “regular” gasoline had lead in it; the other option – “unleaded” gas – did not.

Now, as a scientist working for EPA, I have a true appreciation for what lead is and how the next generation of kids can benefit from living in an environment that is cleaner because “regular” gasoline is no longer the norm.

By removing lead from gasoline and tightening industrial emissions standards, EPA has drastically reduced lead air emissions in the U.S.; they declined by more than two orders of magnitude (100 times) between 1970 and 2008.  But even with such important progress, by 2008 scientists realized that it was not enough, and that a young child’s cognitive function could be impacted by much lower lead exposures than previously understood. Supported with such science, EPA lowered its National Ambient Air Quality Standard for lead tenfold.

In June 2013, EPA released its most recent review of the science on the health and ecological effects of lead. Scientists who study lead consider it one of the “dirtiest” chemicals because it affects so many different systems in the body.  It does this by interfering with molecules called “ions.” When lead exposure affects ion status in the cells, it disrupts how calcium is regulated and how proteins are used for essential bodily functions.  This can lead to a wide array of health and ecological effects.

In children, lead exposure can cause IQ reductions and decreased academic performance. Lead can also cause behavioral changes in children, have harmful effects on blood cells and blood producing organs, and may cause decreased auditory and motor function, as well as immune effects.  Some of these effects may be irreversible and there is no evidence of a threshold below which scientists can be confident that there are no harmful cognitive effects from lead exposure. In adults, long-term lead exposure can cause increased blood pressure and hypertension, lead to coronary heart disease and affect many other organ systems. Just as lead can harm humans, it can also harm animals and other organisms that live on land and in the water by reducing survival, growth and reproduction, as well as affecting behavior, development and blood producing organs.

In addition to setting standards for lead in air, EPA continues to protect human health and the environment from the harmful effects of lead through a variety of programs.  EPA’s assessment of the science on the health and ecological effects of lead underpins these efforts. I am proud to be part of an agency that’s been working for four decades to keep lead out of our air, water, and soil.

To find out more about what EPA is doing to protect the American public from lead exposure, visit the Agency’s lead website at http://www2.epa.gov/lead.

About the Author:  Ellen Kirrane is an epidemiologist in EPA’s National Center for Environmental Assessment. She works on Integrated Science Assessments, which form the scientific basis for the National Ambient Air Quality Standards.

 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

To Your Good Health: Climate Action May Yield Significant Health “Co-Benefits”

By John Dawson

our_changing_planet_2008_166_20090708_2071842232 (1)Everyone likes a two-for-one deal, and a study published in Nature Climate Change shows we get such a bargain when we reduce carbon dioxide, an air pollutant also known as a greenhouse gas. Carbon dioxide emissions from cars, trucks, coal-fired power plants and other fossil-fuel-burning sources are causing a threat to our health because of the pollutant’s role in warming the atmosphere and causing climate change.

Scientists at the University of North Carolina at Chapel Hill, EPA, and several other institutions identified co-benefits of reducing greenhouse gases. The study was funded by EPA’s Science to Achieve Results (STAR) program.

The team used computer models to simulate global air quality under two scenarios. One depicted a world with no global policy to limit greenhouse gases, allowing carbon dioxide concentrations to increase from present levels of just under 400 parts per million (ppm) to 760 ppm in 2100. A second scenario simulated global carbon emission reductions to achieve concentrations of 525 ppm in 2100. Scientists then calculated how these two disparate policies would affect other air pollutants, or “co-pollutants,” that are emitted along with carbon dioxide.

Their analysis showed that reductions in greenhouse gas emissions would yield major benefits by improving air quality and public health.

The researchers calculated that the second carbon emission reduction scenario (which includes expected economic growth) would prevent one-half million air-pollution-related premature deaths per year globally in 2030; these benefits would grow to 1.3 million fewer deaths in 2050, and 2.2 million in 2100.

These health benefits are estimated to be equivalent to between $50 and $380 per ton of carbon dioxide reduced globally.

The study shows that the health-related economic benefits of reducing greenhouse gas emissions may outweigh the costs of control—even before the benefits of reducing climate change are realized.

While a single scenario is not enough to draw definitive conclusions about the ramifications of future greenhouse gas emission reductions, the research does suggest there may be multiple benefits to reductions: limiting climate change, reducing other air pollutants at the same time and providing a safer and healthier environment.

To read the study, “Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health,” go to http://bit.ly/15OY2Xr.

About the Author: John Dawson is a Physical Scientist in EPA’s National Center for Environmental Research.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.