air research

From Grasslands to Forests, Nitrogen Impacts all Ecosystems

By Ashley Mayrianne Jones

Can there be too much of a good thing?

That’s the case with nitrogen, an essential element for plant growth that, in overabundance, can also be potentially damaging. Nitrogen moves from the air to the land, soil, and water via a process called nitrogen deposition. Atmospheric nitrogen deposition has increased ten-fold or more since pre-industrial levels due to increased emissions from the burning of fossil fuels, fertilizer use, and other human activities.

Blue Ridge Mountains at the Roan Highlands State Park in North CarolinaOnce nitrogen is emitted into the atmosphere, it can travel vast distances and deposit in the environment, making it a national as well as local problem. Elevated nitrogen deposition can increase leaf biomass in the canopy, shading ground-dwelling plants from the sun. Additionally, physical and chemical reactions that occur when nitrogen compounds are deposited can lead to more acidic soils. Both effects restrict plant growth and increase competition for limited resources, resulting in a loss of local biodiversity.

To date, most U.S. biodiversity studies on the effects of nitrogen deposition had been focused on individual sites, where fertilizer was applied and small plots were monitored through time. It was unknown whether the resulting reductions in plant biodiversity at these small scales translated to meaningful changes at the landscape level. A series of recent studies had indicated that across the European continent, many ecosystems were experiencing reductions in plant biodiversity due to nitrogen deposition. However, it remained unclear whether the same held true in the U.S., which historically, has experienced lower atmospheric deposition levels.

That’s why EPA researcher Chris Clark and a team of scientists from EPA, U.S. Geological Survey, the U.S. Forest Service, the University of Colorado, and multiple other universities are exploring the effects of nitrogen deposition on herbaceous plants (those with non-woody stems such as grass) in a first-of-its-kind study focused on multiple ecosystems across the nation. The new research expands the focus to not only grasslands, but into habitats that have not received much attention, including the forest understory.

The study, recently published in Proceedings of the National Academy of Sciences, assesses how nitrogen deposition affects herbaceous plants at over 15,000 forest, woodland, shrubland, and grassland sites throughout the United States. The research addresses how physical, chemical, and climatic factors such as soil acidity, temperature, and precipitation can affect an area’s vulnerability to nitrogen deposition.

Nearly a quarter of the sites were vulnerable to nitrogen deposition-induced species loss, and those with acidic soils tended to be more vulnerable. At extremely low levels of nitrogen deposition, the number of individual plant species tended to increase. However, above a certain threshold level, or “critical load,” diversity began to decline.

The study indicated that on average, forests can tolerate slightly higher levels of nitrogen deposition than other ecosystems before showing a negative impact on biodiversity. The reasons for this are unclear, but scientists hypothesize part of the reason is that forest species living under the canopy are already adapted to low-light conditions and are less susceptible to shading effects caused by increased nitrogen. Both grasslands and forests, however, were quite vulnerable to nitrogen deposition, with critical loads in the range of current deposition levels.

Moving forward, EPA scientists and their partners will attempt to determine which individual plant species are most at risk, and which native and invasive species may increase with elevated nitrogen deposition.

Examining multiple ecosystems across the country gives us more information about how different locations may respond to the effects of nitrogen deposition and will help set monitoring and conservation priorities that protect plant biodiversity.

Learn more about EPA’s Air, Climate, and Energy Research.

About the Author: Ashley Mayrianne Jones is a student contractor and writer working with the science communication team in EPA’s Office of Research and Development.

Citation: Biological Sciences – Ecology: Samuel M. Simkin, Edith B. Allen, William D. Bowman, Christopher M. Clark, Jayne Belnap, Matthew L. Brooks, Brian S. Cade, Scott L. Collins, Linda H. Geiser, Frank S. Gilliam, Sarah E. Jovan, Linda H. Pardo, Bethany K. Schulz, Carly J. Stevens, Katharine N. Suding, Heather L. Throop, and Donald M. Waller. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. PNAS 2016 113 (15) 4086-4091; published ahead of print March 28, 2016, doi:10.1073/pnas.1515241113

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Collaborating with Local Communities to Measure Air Pollution

By Michaela Burns

I am no stranger to air pollution. Since I grew up in New York City, my walk to school every morning put me in constant contact with car exhaust and smoke rising from the vendor stations that lined the sidewalks. None of these experiences ever struck me as odd. They were just a part of the city’s charm! We had the Empire State Building, the Statue of Liberty, and we had air pollution. On particularly smoggy days, when I could barely see the city from my window, I always comforted myself with the fact that it was a problem far out of my league. After all, I was just an ordinary kid, not a scientist — what could I do to help? Nothing of course.

Once I started working at EPA, I found out that I had been completely wrong. Managing air pollution is a big job, but it can be made easier when the whole community gets involved. We call it “citizen science” — where people without a background in research can use scientific tools to address problems in their environment. To support this fast-growing field, EPA’s Science to Achieve Results (STAR) program is funding six grants to evaluate how effective low-cost, portable air sensors are when used in communities.

APM4C Blog Picture

EPA researcher Eben Thoma adjusts an SPod monitor.

EPA grant winners at the Massachusetts Institute of Technology will use community-based air sensors to measure air quality and volcanic smog (“vog”) exposure on the Island of Hawai‘i (“the Big Island”). Up the coast at the University of Washington, researchers plan to deploy air sensors in student-directed studies examining heavy wood smoke impacts in their rural community. The team will work in partnership with Heritage University, whose students represent the local population of predominantly Yakama Nation and Latino immigrant families, to identify effective ways to communicate pollutant results to a broader audience. And this is just a sample of the diverse group of projects being done to help make air sensors more available to the public across the U.S. Other efforts include:

Carnegie Mellon University. Researchers will investigate the accuracy and reliability of existing air sensors, as well as their efficacy when put to use in Pittsburgh communities.

Kansas State University. Researchers will investigate if communities in South Chicago become more engaged in learning about their environment if they are provided with low-cost air sensors and the information generated by them.

Research Triangle Institute This research team will investigate how low-cost sensors can be used to help the Globeville, Elyria, Swansea (GES) community north of Denver, Colorado measure and understand data indicating the air quality in their neighborhood. The team will also evaluate the effectiveness of how information is presented to enable residents to understand their exposure to indoor and outdoor air pollutants and potentially empower them to take action to protect their health.

South Coast Air Quality Management District. This research team will provide local California communities with the knowledge necessary to select, use, and maintain low-cost, commercially available air monitoring sensors and to correctly interpret sensor data. The group will communicate the lessons learned to the public through a series of outreach activities.

By supporting the development and deployment of air monitoring technology, EPA is empowering ordinary citizens to take action against air pollution. Looking out for your community can be as easy as using our air sensor toolbox for citizen scientists to find out how to monitor the air quality in your neighborhood. With tools in reach, there’s no reason not to become a citizen scientist today!

About the author: Michaela Burns is an Oak Ridge Associated Universities contractor and writer for the science communication team in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Scientists vs. Rock Stars

By Dr. Rebecca Dodder

My family is probably not typical.  We lean toward the science geek end of the spectrum.  I’m a scientist, my husband is an engineer, and our kids like math and science much more than any subject, unless recess is a subject.  My kids could tell you who Neil deGrasse Tyson is, but would be hard pressed to point out Justin Bieber or Rihanna in a crowd.  The fact that Justin Bieber is one of the few examples I can think of, probably speaks to how truly uncool I am.  Don’t quiz me on famous actors, singers, YouTube sensations, or popular TV commercials.

Scientists often don’t get visible recognition for the important work that we do.  Popularity is saved for the truly impactful, like funny animal video compilations.  So, when I found out in February that I would be visiting the White House as part of the Presidential Early Career Award for Scientists and Engineers, I thought that this was one of the brief and fleeting moments when I would be at least on the edges of the limelight — meeting the President — because of doing science as well as outreach to communities.

President Barack Obama joins recipients of the 2013 Presidential Early Career Award for Scientists and Engineers (PECASE) for a group photo in the East Room of the White House, May 5, 2016. (Official White House Photo by Lawrence Jackson)

President Barack Obama joins recipients of the Presidential Early Career Award for Scientists and Engineers (PECASE) for a group photo in the East Room of the White House, May 5, 2016. (Official White House Photo by Lawrence Jackson)

The ceremony included more than 100 scientists and engineers that had been nominated by National Science Foundation, Departments of Commerce, Defense, Energy, etc. and of course, EPA.  From my perspective, I was in a room with rising stars in science and engineering.  Individuals who had also reached out to students and their communities, connecting their science to people’s lives through mentoring and through service.  There were awards for work on cancer, digital forensics, antibiotic resistance, star evolution, self-healing metals, and my favorite, planetary protection.  I know our EPA Mission is protecting human health and the environment, but the whole planet?  That’s taking it up a notch.  However, another awardee told me that his “favorite agency” was the EPA.  Take that NASA.

We took the group picture in a large lovely room, with President Obama in front middle.  We had waited for a while, careful not to lock our knees, pass out, and fall off the podium.  Strangely enough, there was a stage, microphones, drums, and amplifiers on one side of the room.  Some of us made jokes about who could sing, but that was more of a side thought as we all waited for the President to walk in the room.  Then, he came, and spoke of the importance of science and engineering, of continuing to drive discovery and innovation, and of taking on challenging and complex issues.  We shook some other hands, John Holdren of the White House Office of Science and Technology Policy, and Jeff Bezos CEO and founder of Amazon.com.  Then we left.

The funny thing was — as we all walked out of the East Room, down the halls, and out of the White House, with this absolutely strange and dazed feeling of having just shook the hand of one of the most prominent people in the world — I remember passing another smaller group coming in, apparently heading into the same room from which we just came.  I remember thinking that, in my opinion, they were way underdressed to meet the President.  They were dressed mostly in black, a bit grungy in a rock star kind of way.  No suits, no ties.

Later on, I was looking at the White House website, and saw that the group I had seen was a hugely popular Mexican rock band, Maná, which could be described as the U2 of Mexico. I actually know and really like the band’s music, I just didn’t happen to recognize them.  The date was May 5th, Cinco de Mayo, and they were doing for a concert for the President.  The lesson is that rock stars are rock stars, and as scientists we continue the work that protects the environment, improves lives, and maybe even protects Earth’s biosphere from returned extraterrestrial samples just in case we do find life elsewhere.  And every once in a while, we will have our moments of glory, however brief.  And then we get back to work.

About the Author: Rebecca Dodder is a Physical Scientist specializing in the use of energy system modeling tools to assess issues related to biomass and biofuels, agriculture-energy linkages, the water-energy nexus, and the broader life cycle impacts of energy choices.  Rebecca holds a PhD in Technology, Management and Policy from MIT, where she worked with a research program on air quality in Mexico City.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

We’re at Our Best When We Work Together: The 2016 Wildfire Smoke Guide for Public Health Officials

By Wayne Cascio and Susan Stone

The summer wildfire season is upon us and almost every day we hear of communities endangered by wildfire or wildfire smoke.  Even now, as we write this blog, there are more than 20 large wildfires across the U.S. that could be affecting your health.  So, when wildfires threaten, where can public officials, communities, and individuals turn for the most up-to-date public health guidance?  They can look to the 2016 Wildfire Smoke: Guide for Public Health Officials.  The Guide has been a trusted source of information for those responsible for protecting the public’s health and welfare since 2001.

cover of the wildfire guideThe updated 2016 guide is an easy-to-use source of information that outlines whose health is most affected by wildfire smoke, how to reduce exposure to smoke, what public health actions are recommended, and how to communicate air quality to the public.  This just-published guide is the product of a collaborative undertaking by federal, state, and non-governmental wildfire experts. These include EPA, Centers for Disease Control and Prevention, U.S. Forest Service, California Air Resources Board, California Department of Public Health, Pediatric Environmental Health Specialty Units, and the Lawrence Berkeley National Laboratory.

The recommendations are founded on scientific evidence, and EPA researchers have contributed much to our understanding of the adverse health effects of wildfire smoke.  Today, EPA researchers are actively working to increase what we know about the health effects of the smoke produced by different kinds of natural fuels such as grasses, pine and hardwood forests and peat.  We are learning about the chemistry of the emissions of wildfires, how the smoke is transported, and how it changes over time.  We are also looking at ways to identify communities at particularly high risk from the health effects of wildfire, and how policies related to air quality could consider wildfire smoke.

The increasing size and severity of wildfire in the U.S. over the last three decades represents one of the many complex environmental health challenges we face today that are best solved through the cooperation of local, state and federal government, public health organizations, communities and individuals.  The fact that wildfires are contributing to a greater proportion of our air pollution, and impacting populated areas more frequently underscores the importance of this challenge.  The 2016 Wildfire Smoke: Guide for the Public Health Officials represents a great example of cooperation to meet an environmental challenge and protect the health of the public.

You can learn more about the health effects of wildfires, obtain current fire advisories, and learn what to do before, during, and after a fire on the AirNow website, a place to get information on daily air quality forecasts based on EPA’s Air Quality Index.

USDA Forest Service Active Fire Mapping Program

Learn about EPA’s wildland fire research

About the authors:

Dr. Wayne Cascio spent more than 25 years as a cardiologist before joining EPA’s Office of Research and Development where he now leads research on the links between exposures to air pollution and public health, and how people can use that information to maintain healthy hearts.

Susan Stone, senior environmental scientist in EPA’s Office of Air Quality Planning and Standards, is the Air Quality Index team leader, the project lead for revisions to the wildfire guide, and contributor to EPA wildfire health research.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

EPA’s MESA Air Study Confirms that Air Pollution Contributes to the #1 Cause of Death in the U.S.

By Dr. Wayne Cascio

This week we took a giant leap forward in our understanding of the relationship between air pollution and heart disease with the publication of results from the Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air) in the leading medical journal The Lancet.

medical graphic of a coronary artery

Fat accumulation in the wall of a coronary artery

For more than two decades, scientific evidence has shown fine particle pollution (PM2.5) in the outside air is a cause of cardiovascular illness and death, and has justified improving the PM2.5 annual National Ambient Air Quality Standard to protect public health.  Yet, MESA Air was the first U.S. research study to examine a group of people over a period of 10 years and measured directly how long-term exposure to air pollution contributes to the development of heart disease and can lead to heart attacks, abnormal heart rhythms, heart failure, and death.  MESA Air did just that, and Dr. Joel Kaufman, the leader of MESA Air at the University of Washington and his colleagues should be commended for their accomplishment.

MESA Air was funded by EPA and made possible by the National Heart, Lung, and Blood Institute, which supports  a larger study on atherosclerosis called MESA. The additional air pollution study had the ambitious goal of seeking an answer to the question of whether long-term exposure to PM2.5 and nitrogen oxides (NOx) was associated with the development and progression of cardiovascular disease.  A total of 6,800 people with diverse racial and ethnic backgrounds and residing in six locations throughout the country agreed to participate in the decade-long study by researchers at the University of Washington who received the grant.  And the results are in!

The researchers used computerized tomography imaging to measure coronary artery calcium content in the same person repeatedly during the study as an indication of coronary artery disease. The results showed that long-term exposure to PM2.5 and NOx increased coronary artery calcium. The increase observed is at a rate that, over the period of the study, would change the risk of heart attack in some.

This study is extraordinary in many ways. First it provides the strongest evidence yet that air pollution can and does contribute to cardiovascular disease–the number one killer of Americans and people in developed countries throughout the world.  Secondly, the results define the relationship between air pollutants and the progression of coronary artery disease over time.  This relationship will help estimate the long-term health impacts and economic burden of air pollution within our population.   And, third the study shows the power of intra-agency cooperation to conduct valuable and cost-effective science.

The findings of MESA Air will continue to reverberate throughout the environmental science and public health communities for some time, but it’s time for healthcare providers, air quality managers and state and local planners to take note and to begin to consider long-term exposure to air pollution as having long-term health implications, even at levels near the National Ambient Air Quality Standards.

About the Author: Dr. Wayne Cascio spent more than 25 years as a cardiologist before joining EPA’s Office of Research and Development where he now leads research on the links between exposures to air pollution and public health, and how people can use that information to maintain healthy hearts.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Simulating Wildland Fires in a Tube to Protect Public Health

By Dina Abdulhadi

After a long day of backpacking in the woods, I always look forward to watching the story arc of a campfire. The flames grow slowly, then leap up as the fire builds momentum. As the fire calms, the logs smolder and glow with heat.

Wildfires have similar phases. During an active fire, flames rapidly move over the landscape. The remaining embers can smolder on for days to weeks after the fire front passes, depending on what trees or other vegetation are there to fuel the fire. These two factors—what is burning and whether it’s flaming or smoldering—affect the smoke that people ultimately breathe.

To study the potential health risks of breathing wildfire smoke, a major form of air pollution, researchers at EPA are now using a technology that mimics these phases of a fire in a laboratory in Research Triangle Park, N.C. Originally developed to investigate tobacco’s health effects, this Biomass Furnace System allows researchers to study the chaotic nature of fire in a controlled setting and compare emissions from different trees during the fire and smoldering stages. Knowing these differences will provide more information to protect public health and enable air quality managers to prepare for the increased wildfires we expect in the future due to climate change and drought.

Tube used to conduct simulation

Biomass Fuel Combustion System

 

Particulate matter (PM) is one of the main pollutants created by fire. These tiny particles are produced when anything is burned—whether that’s the logs to your campfire or gasoline ignited to fuel your car’s engine. Many studies have linked it to effects on the heart and lungs.

During 2011, wildfires and controlled burns alone contributed up to 41 percent of emitted PM pollution in the U.S. This pollution can have drastic effects on the local community, but it can also affect the air breathed by those far away as the smoke drifts.

To understand the growing impact of wildfires on human health, researchers plan to look at effects on the heart, nervous system (such as headaches), and respiratory system from a variety of wood fuels by using models. They’ll also investigate if PM from wildfire smoke is more or less harmful than PM from other sources of air pollution, like car exhaust.

map of potential fires across US

Map showing distribution of potential wildfire fuels across the United States (Credit: Yongho Kim)

According to the National Fire Center, two fires are burning right now in my state of North Carolina alone. When you consider what could be happening in the other 49 states as well, this kind of research becomes that much more valuable for scientists working to protect public health.

Want to learn more about the research EPA conducts on wildfires to protect human health and the environment? Listen to our Science Bite Podcast Following the Smoke: Wildfires and Health.

About the author: Dina Abdulhadi is a student contractor working with the science communication team in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Gamify the Grid! New EPA game Generate! Helps Students Understand the Relationship between Climate Change and Energy Production

By Rose Keane

When you’re teaching someone, sometimes you never know what’s going to stick. Some people need to hear the information, others might need to read it, but chances are the best way to get someone to remember is to have them try it themselves.

EPA researcher Rebecca Dodder is helping teachers provide middle school and high school students with these kinds of opportunities through her new Generate! game, a board game that requires the player to consider the costs and benefits of the type of energy we use and impacts on air quality and climate.

Hands-on learning! Kids play the Generate! game during Earth Day festivities at EPA’s campus in Research Triangle Park, N.C.

Hands-on learning! Kids play the Generate! game during Earth Day festivities at EPA’s campus in Research Triangle Park, N.C.

Having students actually grapple with the realities of financial limitations, carbon emissions, and limited natural resources makes the lesson much more tangible and long lasting. I had the chance to see these connections being made when students came to EPA’s campus in Research Triangle Park, N.C., to play the game during Earth Day festivities.

Here’s how it works.  In the first round, students select which sources of energy—for example, coal, natural gas, nuclear, solar or wind—that they would like to use given a finite amount of resources (in this case the number and types of energy pieces). Each energy source comes with its associated installation and maintenance costs, and the aim is to meet energy demands (filling up the full board space) while spending as little as possible.

The second round, however, made things a bit trickier. As with our energy sources in real life, there is a cost associated with the carbon emissions of each energy piece, with heavier costs for higher carbon-emitting sources like coal, and smaller or no carbon costs for the renewable energy sources. These costs refer to the idea that for each ton of carbon dioxide emitted, there are increased costs to communities from climate change. As students factored these numbers in, they realized their original plan was no longer sustainable and also way too expensive. You could practically hear the groans coming from each group’s table when the final tallies came in.

In the third round, students were offered pieces called “efficiencies,” which represent our behaviors, consumer choices, and energy efficient appliances. These pieces incur relatively small costs initially (for example, how much it would cost to replace your washer and dryer), but in the long run actually save the player money. “Think about it,” Dodder said to the students, “A lot of these big decisions are out of our control, like whether or not to build a nuclear power plant, for example. The thing about the smaller energy efficiency pieces is that’s all the stuff that we can change – it’s all in our control.”

Making climate change and its impacts tangible for younger generations can be extremely difficult, but games like Generate! make these kinds of activities fun, educational, and remind the students that their energy choices are in their hands. Educators can use this game to help their students recognize the relationships between energy usage and climate change, and encourage them to investigate their role in the carbon cycle further.

Dr. Dodder’s innovative approaches to educating the younger generation about science and her research contributions are being recognized today at a ceremony in Washington, DC where she will receive a Presidential Early Career Award for Scientists.

Learn more about the Generate! game and download your copy here.

About the Author: Rose Keane is an Oak Ridge Associated Universities contractor with the science communications team in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Particulate Matter in a Changing World: Grants to Combat the Impacts of Climate Change

By Christina Burchette

There are certain things that are always changing: the weather, fashion trends, and technology (which iPhone are we on again?) are a few that come to mind. I can always count on the fact that these things won’t stay the same for long. But there are other things that I typically expect to remain the same: I expect to get hungry around lunchtime, I expect the bus to come every morning, and I expect to be able to breathe clean air. I don’t even think about the possibility of these things not happening—until something changes.

I definitely don’t think about air quality often or expect it to change. As long as I’m breathing and well, why would I? But in reality, air quality changes every day, and over time it may change a lot depending on how we treat our environment—and we need to be ready for these changes. This is why EPA recently awarded research grants to 12 universities to protect air quality from current and future challenges associated with climate change impacts.

Climate change is affecting air quality by influencing the type and amount of pollutants in the air. One type of pollutant present in our air is particulate matter, or PM. Long-term exposure to PM is linked to various health effects, including heart disease and lung function, and it doesn’t take a high concentration to affect our bodies. The more PM there is in the air, the more likely we are to be affected by health conditions.

landscape of Death Valley National Park with dust storm

A dust storm in Death Valley National Park

With EPA Science to Achieve Results (STAR) grants, university researchers are approaching the future of air quality from multiple angles with a focus on learning more about the PM-climate change relationship. They will study the impacts of increased wildfire activity that generates PM, often called soot, in the Rocky Mountains. They will look at the impacts that climate change and land use change have on the development of dust storms in the West and Southwest; and they will evaluate the best means of energy production in California where air quality is among the worst in the nation to reduce health care costs and lower levels of PM and greenhouse gases.

Over the next few decades, climate change will be the catalyst for various environmental trends, so finding a way to manage the impacts of these trends is essential to protecting our health. The work these grantees do will help to inform air quality managers and others to make sustainable and cost-effective decisions that keep our air quality at healthy levels and protect public health and the environment. That way, future generations will think of good air quality as something we can expect.

To learn more about these grants and read the abstracts, visit the Particulate Matter and Related Pollutants in a Changing World results page.

About the Author: Christina Burchette is an Oak Ridge Associated Universities contractor and writer for the science communication team in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Air Quality Awareness: A New Generation of Research

By Dan Costa, Sc.D.

Graphic of clouds and buildings in a silhouette cityscape. It’s Air Quality Awareness Week! This week, EPA is showing how we care about the air by announcing grants to three institutions to create air research centers. We now understand more than ever about the threats of air pollution to environmental and human health, but there is still more to learn. EPA has a history of supporting research and development that complements the work of our own staff scientists to bolster scientific knowledge about the effects of air pollution. EPA uses this knowledge to address many pressing questions and understand connections between our changing environment and human health.

Since 1999, EPA has funded three rounds of research centers through a competitive grant process. The scientific experts at these centers have contributed to a more complete understanding of the persistent air quality challenges that continue to face our nation. The first round of EPA funded air research centers focused on particulate matter and examined the link between particulate matter and cardiovascular disease. In 2005, the next round of centers focused on whether differing health effects could be linked to specific sources of air pollution. By 2010, it was clear that to get an accurate understanding of real life exposures, we needed to examine the health effects of exposure to multiple pollutants at once instead of just one or two at a time. The third round of centers took on this complex challenge. The next step is to delve into questions regarding how the health effects of air pollution may vary in different cities and regions across our country – each with its own unique characteristics and set of pollution sources.

This leads us to today and our exciting announcement–EPA is awarding $30 million through its Science to Achieve Results (STAR) program to fund the establishment of Air, Climate, and Energy (ACE) Research Centers at Yale University, Harvard University and Carnegie Mellon University. These Centers will consider changing energy production methods and local climate, while investigating the effects of global climate change, technology, and societal choices on local air quality and health.

I am eagerly anticipating the many new tools and ideas that will be produced by this next generation of EPA funded air research centers.

About the Author: Dan Costa is the national program director for EPA’s Air, Climate, and Energy Research Program.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Olive Oil and Fish Oil: Possible Protectors against Air Pollution

By Rose Keane

My grandmother is 97, and last year she chopped down an orange tree in her backyard with an axe. Recently I asked her how she was still able to live and move around so independently, and she says to me in her thick Austrian accent, “I take fish oil tablets – they’re very good.” Many people have said that fish oil will improve your health, but when you ask them they have no idea how or why. EPA scientist Dr. Samantha J. Snow is working to answer some questions about what fish oil may do by investigating the potential link between fish oil and how the body handles air pollution exposure.

Dr. Snow looks at a slide

EPA scientist Dr. Samantha J. Snow

Snow is receiving the Women in Toxicology’s Postdoctoral Achievement Award, presented by the Society of Toxicology (SOT), at the annual meeting held in New Orleans this week. Her recent research uses animal models to look at how these oils in the diet might change how the body handles exposure to ozone, a common outdoor air pollutant. A large body of scientific research has shown that the lungs and heart can be affected by air pollution. Scientists like Snow are studying whether ozone pollutants in the air are damaging other organ systems and even how our bodies use and regulate energy, also known as our metabolism. Snow and her colleagues are trying to find out whether adding fish oil to a diet can help people like my grandmother ward off the damaging effects of air pollution.

What the team discovered so far is that fish oil and olive oil could potentially protect muscles in the body from breaking down due to air pollution exposure. That might explain how my Oma was able to tackle that tree! The preliminary findings also suggest that fish oil could protect against higher levels of cholesterol caused by air pollution. However, olive oil was linked to a decreased ability to regulate glucose levels in the blood after ozone exposure.

Dr. Snow using a microscopeThese results could have very interesting implications for health research in the future, and could help scientists better identify how changing our diets might actually help protect our bodies from the harmful effects of air pollution. Scientists will also be better equipped to understand how the different systems in the body react differently to exposure.

In addition to her research, Snow has been very active in leadership roles in organizations such as the Society of Toxicology Postdoctoral Assembly and the Rho Tau chapter of Graduate Women in Science.

Snow’s presentation, entitled ‘Coconut, Fish and Olive Oil- Rich Diets Modify Ozone Induced Metabolic Effects,’ is one of many by EPA scientists at the largest toxicology meeting in the U.S. For a complete list of all EPA researchers presenting at this year’s SOT event, visit us at https://epa.gov/research/sot.

About the Author: Rose Keane is an Oak Ridge Associated Universities contractor with the science communications team in EPA’s Office of Research and Development.

 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.