air research

Learn About Your Environment with Science Bite Podcasts

By Jocelyn Buckley

I know you’re really busy. I know that as much as you want to stay updated on the latest news, you just don’t have the time to sit down and read a newspaper. We want to make it easier for you to stay informed about some pretty cool science that is protecting your health and environment. Instead of downloading the latest Maroon 5 song, you should check out EPA’s “Science Bite” podcast. While each episode is only about three minutes long, they provide a healthy dose of research news.

Science Bite graphic identifier: illustration of globe with headphones“Science Bite” explores the research conducted by some very dedicated EPA scientists and engineers to protect air quality, prepare for climate change impacts on human health and ecosystems, and make energy decisions for a sustainable world. Researchers talk about their work and why it is important.  I had the privilege of meeting some of these researchers while helping write the most recent podcast, and I have never met such passionate, intelligent people.

I found out a lot about environmental issues and interesting facts by listening to these podcasts. Here’s a quick sampling of my three favorites (there are more):

  • July’s episode focused on the dangers of cookstoves fueled on wood, charcoal and other traditional fuels, and how they affect the health of many, many people around the world as a result of their indoor emissions.
  • In May’s “Science Bite,” EPA researchers talked about the Village Green Project, and how this state-of-the-art park bench can measure air pollution.
  • The most recent podcast discusses wildfire emissions. Who knew that there are many more things to consider besides your lungs? Researcher Ian Gilmour talked a little bit about his experience with the 2008 study of a peat fire in Eastern North Carolina.

Science-Bite1So, if you’re driving to work or eating breakfast, spare a couple of minutes to hear what’s going on in your environment. Go to for more information.

About the Author: Jocelyn Buckley was a student intern in EPA’s Air, Climate, and Energy Research Program this summer. She will graduate from high school next year, and hopes to pursue environmental policy and journalism.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Are Some People More At Risk from Air Pollution?

By Dina Abdulhadi

Rearview mirror during an early morning commute.

A study by researchers from EPA and Duke University reflects how traffic-related air pollution can impact the health of people living in nearby communities.

I’m driving in rush hour traffic, waiting for the slow crawl of cars to reach the speed I would be moving had I biked home. My heart rate rises slightly; it’s a beautiful summer day and I’m thinking of the many things I’d rather be doing than sitting in traffic.

The congestion eventually eases though, and I’m home. I breathe deeply, and my heart rate lowers.

The stress I felt had an immediate but temporary effect on my health. For people who live in communities near these congested roadways, however, traffic can have a longer-term impact on heart health. And even then, air pollution does not affect everyone equally.

A new study suggests that women and African-Americans who live near busy roadways may have a greater risk than their white male counterparts for developing high fasting blood sugar levels, a risk factor for heart disease.

The study used a database called CATHGEN, developed by Duke University. It contains health information on nearly 10,000 people who received cardiac catheterization, a common test for heart disease. Researchers at EPA and Duke University are using the participant’s health data to see how air pollution also affects the progression of heart disease.

A large body of research has connected fine particulate matter, a common air pollutant, to health effects, including heart problems. Many studies have even found that consistent exposure to the same elevated level of air pollution can have a stronger impact on blood glucose for women than men. But the race-related disparity is a new observation, researchers conclude in the study.

This study is one in a series that aims to see how factors like age, sex, race, disease status, genetic makeup, socioeconomic status, and where a person lives can put someone at greater risk from the health effects of air pollution. The knowledge gained through CATHGEN studies can be used to develop public health strategies for protecting those at greater risk from air pollution and to support review of the Air Quality Standards under the Clean Air Act.

Ongoing EPA CATHGEN studies are expected to provide more answers to the question of whether air pollution may affect people differently. In the meantime, read this first CATHGEN study, published in Environmental Health Perspectives and titled, Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients.

Air pollution most strongly effects those already at risk for heart disease, mainly older adults and those with high blood pressure, cholesterol, or history of heart problems. Though I’m young and healthy, days with higher pollution levels can still make me winded while exercising even if they don’t trigger a heart attack. Reading papers like this reminds me to check the Air Quality Index before planning long summer bike rides and makes me appreciate how important environmental quality is to human health.

About the Author: Dina Abdulhadi is a student contractor working with the science communication team in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Release of Community Air Monitoring Training Videos


Community leaders and EPA presenters

By Amanda Kaufman

I have seen a fast expansion of next generation air pollution sensor technologies while working in the field of citizen science for the past three years. Small, hand-held air quality sensors are now commercially available and provide citizens the ability to plan, conduct, and understand local environmental air quality as never before. Many of these cost less than $1,000, making them more accessible for community groups and even individuals to purchase.

While the new sensor technologies generally do not provide regulatory-grade data, such devices are rapidly advancing to improve data quality and can be used to enhance monitoring efforts. They can be used in a wide range of situations including to investigate air quality concerns in local communities and to teach people about the importance of clean air to public health and the environment.


EPA’s Kristen Benedict talks about sensor messaging

With the rapid growth of sensor technologies, there is a great demand for information on how to select the appropriate monitoring technology and use it to gather viable information. That is why I am pleased to announce the availability of six air monitoring training videos, developed to help citizen scientists conduct air quality monitoring projects. The videos feature presentations by EPA experts and a citizen science professional given at EPA’s Community Air Monitoring Training workshop on July 9, 2015.

EPA hosted the training workshop as a pilot venture to share tools used to conduct citizen science projects involving Next Generation Air Monitoring (NGAM) technology and to educate interested groups and individuals about best practices for successful air monitoring projects.

The videos are part of the Air Sensor Toolbox for Citizen Scientists and are intended to serve as resources for anyone interested in learning more about monitoring air quality. They provide short overviews (between 15-18 minutes in length) on topics that can help citizens plan and implement a successful air monitoring project. The topics and presenters are:


I was delighted to see the enthusiasm of the workshop attendees for the training and their desire to apply it to their local situation. It was contagious. Many who attended indicated they would go home and share key aspects of the training with their community groups to develop their own citizen science research plans.

With the availability of the training videos, more people will have access to the information provided on emerging technologies and community air monitoring. I see a bright future for citizen scientists as they become more aware of their local environment.


About the Author: Amanda Kaufman is an ORISE participant hosted by EPA’s National Exposure Research Laboratory.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Expanding the Village Green Project to Measure Local Air Quality

By Esteban Herrera, Gayle Hagler and John White

VG Station in Philadelphia, PA

Village Green Station in Philadelphia, PA

We have been busy for a few years with the Village Green Project, exploring new ways of measuring air pollution using next generation air quality technology put into a park bench. After testing our first Village Green station in Durham, N.C., we are now in the process of building and installing new stations with some design improvements and modifications.

The Village Green Project expansion is being made possible with the support of state and local partners across the country. Five new locations for stations have been selected through a nationwide proposal process open to local and state air monitoring agencies.

Today, EPA announced the partners and location for the new stations and held a ribbon-cutting ceremony in Philadelphia, Pa. for one of the five stations.

The Village Green Project has many benefits. It enables EPA’s scientists to further test their new measurement system, built into a park bench, and it provides an opportunity for the public and students to learn more about the technology and local air quality.

Each station provides data every minute on two common air pollutants – fine particle pollution and ozone – and weather conditions such as wind speed and direction, temperature, and relative humidity. The data are automatically streamed to the Village Green Project web page. You can access the data generated by stations as they come on line at As members of a team working on the Village Green Project at EPA, we have been doing a lot of coordination and tackled some difficult scientific challenges to get this project launched. But it is all coming together as we get the stations installed. We think it will be a great opportunity for educational outreach and to showcase some new capabilities for communities to learn more about their local air quality. These monitoring stations will enable communities to get information about nearby sources of air pollution that can impact local air quality.

VG Station in Washington, DC

Washington, DC

The five station locations being installed in 2015 as part of the local and state partnership are:

  • Philadelphia, Pa. – the station is located in Independence National Historical Park in Philadelphia owned by the National Park Service.
  • Washington, D.C. – the station is located in a children’s area at the Smithsonian National Zoological Park.
  • Kansas City, Kan.- the station is located outside of the new South Branch public library in Kansas City.
  • Hartford, Conn. – the station will be located outside of the Connecticut Science Center and will be installed in the summer or early fall of 2015.
  • Oklahoma City, Okla. – the station will be located in the children’s garden of the Myriad Botanical Gardens and will be installed in the summer or early fall of 2015.
VG Station in Kansas City, KS

Kansas City, KS

So what is next? We are excited about the expansion of the Village Green Project and hope to learn how some of the new system features perform, such as a combined wind and solar power system we’re using for more northern locations. We hope the project will provide more knowledge about how to build and operate next generation air quality measurement systems for use by communities. Please stay tuned for more updates from the Village Green Project team members as we continue our learning journey.


About the Authors: Esteban Herrera is an environmental engineer and project lead for the Village Green Project. Gayle Hagler is an environmental engineer who studies air pollutant emissions and measurement technologies. John White is leading the effort of expanding AirNow’s capabilities to handle one-minute data, including data from the Village Green stations.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Air Sensors Citizen Science Toolbox


By Amanda Kaufman

There is a growing interest by citizens to learn more about what’s going on in their community: What’s in the air I breathe? What does it mean for my health and the health of my family? How can I learn more about these things and even be involved in the process? Is there a way for me to measure, learn, and share information about my local air quality?

Researchers at EPA have developed the virtual Air Sensors Citizen Science Toolbox to help citizens answer these types of questions and more. With the recent release of the Toolbox web page, citizens can now visit and find many different resources at this one simple location. As a citizen scientist myself, I am very excited to learn that there are funding opportunities for individuals and communities to conduct their own air monitoring research projects. The Funding Sources for Citizen Science Database is just one of the many resources on the Toolbox webpage.

One of the resources available as part of the Toolbox is the Air Sensors Guidebook, which explores low-cost and portable air sensor technologies, provides general guidelines on what to look for in obtaining a sensor, and examines important data quality features.

Compact air sensor that could be used by citizen scientists to monitor local air quality.

Compact air sensor that could be used by citizen scientists to monitor local air quality.

To understand the current state of the science, the Toolbox webpage also includes the Sensor Evaluation Report, which summarizes performance trials of low-cost air quality sensors that measure ozone and nitrogen dioxide. Future reports to be posted on the webpage will summarize findings on particulate matter (PM) and volatile organic compound (VOC) sensor performance evaluations.

As they are developed, more tools will be posted on the webpage, including easy-to-understand operating procedures for select low-cost sensors; basic ideas for data analysis, interpretation, and communication; and other helpful information.

I believe the Toolbox is a great resource for citizens to learn more about air sensor technology at a practical level. It will provide guidance and instructions to citizens to allow them to effectively collect, analyze, interpret, and communicate air quality data. The ultimate goal is to give citizens like you and me the power to collect data about the air we breathe.

About the author: Amanda Kaufman is an Environmental Health Fellow from the Association of Schools and Programs of Public Health (ASPPH). She is hosted by EPA’s Air, Climate, and Energy national research program.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Changing Times: EPA’s Report on National Trends

By Gaelle Gourmelon

Some things in my childhood memories look different when I revisit them as an adult. That tall slide in the playground? It’s really only four feet high. The endless summer bike rides to the beach? They now take ten minutes. Sometimes, however, things seem different because they’ve actually changed. I recently went to a favorite childhood beach and saw that the dock was now stranded in the water, no longer reachable from the beach. Undeniable evidence of the changing coast.

But what evidence do we have to observe real changes over time when it comes to our national environment? What data can we use to determine if our environment has meaningfully changed?

To help answer these questions, EPA released the draft Report on the Environment 2014 (ROE 2014) for public comment in March, and it will undergo external peer review on July 30-31, 2014.

The ROE 2014 is not an intimidating, technical tome; it is an interactive website, full of national-level environmental and health indicators and is designed to make it easier to find information on national environmental trends. It’s not a giant, unwieldy database. Rather, it’s a summary of important indicators that paints a picture of how our environment is changing.

Why use indicators?

Just like having a high temperature indicates you are sick, environmental indicators help us understand the health of the environment. ROE indicators are simple measures that track the state of the environment and human health over time.

For example, if we want to understand the nation’s air quality, we can measure indicators such as lead emissions, acid deposition, and particulate matter concentrations to give us clues about overall changes. These indicators can help us make informed decisions about conditions that may otherwise be difficult to measure.

Report on the Environment

An exhibit for the acid deposition indicator gives us a clue about the changes in the quality of outdoor air in the US.


What’s included in the Report on the Environment?

Data for the ROE indicators come from many sources, including federal and state agencies as well as non-governmental organizations. EPA brought together scientists and other experts to determine what data are accurate, representative, and reliable enough to be included. With feedback from the public and our partners, we selected 86 indicators that help to answer questions about air, water, land, human health and exposure, and ecological condition. The ROE 2014 also includes new indicators on aspects of sustainability.

Why do we need the Report on the Environment?

EPA designed the ROE to help answer mission-relevant questions and help us track how we’re doing in meeting environmental goals. But because the ROE 2014 is an easy-to-use, interactive website, scientists, decision-makers, educators, and anyone who is curious about the environment and health can view the most up-to-date national (and sometimes regional) data, too. The ROE shows trends and sets up baselines where trend data do not yet exist. It also highlights gaps where we don’t have reliable indicators.

How can I participate in the external peer review meeting?

EPA is committed to proactively engaging stakeholders, increasing transparency, and using the best available science. By releasing the draft ROE 2014 for public comment and peer review, we benefit from stakeholder and scientific engagement to support the best conclusions possible. The draft ROE 2014 website will be reviewed by EPA’s Science Advisory Board in a public meeting on July 30-31, 2014. For additional meeting details, visit the July 11, 2014 Federal Register Notice and the SAB meeting website.

How can I stay connected with the ROE?

Everyone can use the ROE to inform their discussions of environmental conditions and related policies in the U.S. The information it provides helps you understand your environment, and encourages you to ask more questions about your environment and health. Now, it’s time to investigate. Things might have changed more than you think.

Sign up to be notified about the upcoming release of the final Report on the Environment 2014; you can also receive periodic updates and highlights.

About the author: Gaelle Gourmelon was an Association of Schools and Programs of Public Health Fellow working on EPA’s Report on the Environment project from September 2012 through May 2014. Her background in biology and environmental health has fueled her passion for reconnecting people with their natural and built environment.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Interested in air sensors? Tune in to our webinar!

By Dustin Renwick

Soccer goalie with outstretched hand

Goal? Sensors will help make the call.

Sensors are everywhere these days. Some determine whether the ball has crossed the goal line in the World Cup. Others help EPA, state and local agencies, and communities take a more in-depth look at air quality.

Commercial manufacturers continue to develop low-cost air sensors that are portable and can relay data in nearly real-time. EPA researchers have begun to develop sensors and test their potential applications. Join our webinar on July 8 at 1 p.m. ET to learn more.

EPA researcher Ron Williams presented a small set of findings at the 2014 Air Sensors workshop in June, the fourth in a series of workshops designed to explore the opportunities and challenges associated with next-generation air quality monitoring technologies and data. Check out the Twitter feed for a look at the discussions that happened last month.

The sensor team, including Williams, has tested these new technologies in the laboratory and in the field. The group assessed how the sensors performed under a range of environmental conditions and with several different kinds of air pollutants. The team also evaluated the technical side of the sensors, including features such as data transmission and battery life.

EPA's Village Green Project, a solar-topped bench with air sensors

EPA’s Village Green Project

Williams will share much more information on the webinar, including the progress of the Village Green Project air monitor prototype and newly published reports about the use of these low-cost technologies.

“We have a lot to learn about sensors, their use, and how they can be applied for a wide variety of air monitoring applications,” Williams said.

“This presentation will give viewers an opportunity to understand what we at EPA have been doing and where the future lies in better understanding sensors and their potential applications.”

If you have any interest in the how sensors are transforming clean air science, the webinar will be worth watching!

About the author: Dustin Renwick works as part of the innovation team in the EPA Office of Research and Development.


Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

DISCOVER-AQ: Tracking Pollution from the Skies (and Space) Above Denver

NASA four-engine turboprop P-38 takes to the sky

NASA four-engine turboprop takes to the sky for clean air science.


EPA scientists have teamed up with colleagues from NASA to advance clean air research. Below is the latest update about that work. 

Denver is the last of four cities in a study by EPA and partners that will give scientists a clearer picture of how to better measure air pollution with instruments positioned on the earth’s surface, flying in the air, and from satellites in space.

The NASA-led study is known as DISCOVER-AQ, and is being conducted July 14 to August 12 in Denver.  The research began in 2011 with air quality measuring conducted in the Baltimore-Washington, DC, area followed by a field campaign in California’s San Joaquin Valley and Houston in 2013.

Right now, monitoring for pollutants such as sulfur dioxides, nitrogen oxides, particulates and ozone is done by ground-based systems strategically located across the U.S. to measure air quality in metropolitan areas and on a regional basis. Researchers want to tap satellite capabilities to look at pollution trends across wide swaths of the country.

“The advantage of using satellites is you can cover a wider area,” said Russell Long, an EPA project scientist.  “But right now, it’s hard for satellites to determine what air pollutants are close to the ground.”

Satellites could be an important tool for monitoring air quality given the large gaps in ground-based pollution sensors across the country and around the world. Improved satellite measurements should lead to better air quality forecasts and more accurate assessments of pollution sources and fluctuations.

However one of the fundamental challenges for space-based instruments that monitor air quality is to distinguish between pollution high in the atmosphere and pollution near the surface where people live.

Ground-based air sensor station

Ground-based air sensor station from the study’s previous Baltimore and Washington area component.

The ground-based sensor readings taken by EPA and other partners in DISCOVER-AQ will be compared to air samples taken by NASA aircraft flown between 1,000 and 15,000 feet in the skies above the Denver metropolitan area. EPA scientists are using the opportunity during the DISCOVER-AQ study to also test various types of low-cost and portable ground-based sensors to determine which ones work the best.

“Our goal is to evaluate the sensors to see how well they perform,” Long said. “By including more sensors it increases our understanding of how they perform in normal monitoring applications and how they compare to the gold standard (for measuring air quality) of reference instrumentation.”

New sensors could augment existing monitoring technology to help air quality managers implement the nation’s air quality standards.

Another big part of EPA’s involvement in DISCOVER-AQ is working with schools and academic institutions to develop a robust citizen science component for pollution monitoring. In Houston, hundreds of student-led research teams all worked to test the air pollution technology by taking regular readings at their schools when NASA aircraft flew overhead.

In Denver, most schools are out for the summer, but EPA researchers will be partnering with the Denver Museum of Nature and Science to share what they are doing in DISCOVER-AQ with the general public.

Long says he is also working with University of Colorado Boulder to look at a unique three-dimensional model of air pollution in the great Denver area. The end result of DISCOVER-AQ will be a   global view of pollution problems, from the ground to space, so that decision makers have better data and communities can better protect public health.

Learn More


NASA Discover-AQ Mission

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

A New Frontier for Air Sensors 2014

By Dustin Renwick

palm-sized air quality sensor

Compact air quality sensor fits in the palm of your hand.

The wearable market has expanded its product line—from smart glasses and smart watches to dozens of different fitness tracker wristbands and T-shirts that interact with the world around you.

What you don’t see in these gadgets is the tiny technologies that make it possible for your T-shirt to light up or for you to tap your wrist and see how many calories you’ve burned.

Similar to how computers shrunk from the size of rooms to the size of your front pocket, sensors have also been developed in ever decreasing dimensions.

One of the major applications for EPA: sensors that measure air quality. Agency researchers and others can use these portable, real-time sensors in the environment to gain a more intricate picture of what’s happening in our communities.

We’ve hosted a competition won by a design for a wearable sensor that estimates a person’s exposure to air pollution. EPA grants fund broad cookstove research, some of which includes the use of air sensors to measure pollution from indoor cookstoves.

Last fall, EPA collaborators published a seminal paper on the sensor revolution in a top journal, Environmental Science & Technology. The journal received more than 5,400 submissions in 2013 on a variety of topics, and EPA’s research won first runner-up for best feature paper.

One of the most important parts of this field of study is the diversity of people interested in the work.

Next week, we’ll hold an air sensors workshop to spark more discussions and continue this important work advancing innovative air sensor technologies by bringing together scientists, policy experts, technology developers, data analysts, and leaders from government, industry, and community groups.

To learn more about the opportunities and challenges that air sensors present, register for the webcast of our workshop on June 9-10.

We’ll live tweet the event from @EPAresearch using #AirSensors.

About the author: Dustin Renwick works as part of the innovation team in the EPA Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Bringing EPA Research—and Confidence—to the Classroom

By Dana Buchbinder

As an undercover introvert I never imagined myself returning to the chaos of middle school, but this spring I took a deep breath and plunged in. For ten Wednesdays I co-taught an afterschool air science apprenticeship for sixth and seventh graders in Durham, North Carolina. The curriculum, “Making Sense of Air Quality,” was developed and taught by two EPA researchers who have volunteered for the past three years with a not-for-profit educational organization.

Students demonstrate air pollution sensors

Making Sense of Air Quality: students demonstrate the air quality sensors they built.

I joined the ranks of these EPA “Citizen Teachers” to help close the opportunity gap in education. The public middle school where we taught serves students from low income families, with 84% of students eligible for free or reduced lunch programs. 15 students participated in our apprenticeship to learn career skills and become air science experts at their school.

At first it was challenging to relax in front of a room of squirmy kids, but I was surprised by how quickly I adapted to students’ needs. Lessons don’t always go as planned (okay, almost never), but patient teaching in hectic moments inspires students to become more observant scientists. When I could step back and appreciate the weekly progress, I recognized the class’s accomplishments.

The students built air sensors from kits an EPA researcher created for outreach. None of the middle schoolers knew electrical engineering or computer programming when we began, but they learned the foundations of these skills in just a few weeks. I watched one student who had struggled with air pollution vocabulary build a working air sensor from a diagram. Meanwhile, his classmate formulated a hypothesis about how her sensor would react to dust in the air.

We asked students to think like environmental scientists: Where would they choose to place air sensors in a community? How could they share what they learned about air pollution?

They saw air quality sensors in action during our field trip to the Village Green Project, an EPA community air monitor at a Durham County Library. Exploring the equipment gave the apprentices more hands-on practice with science.

In addition to teaching kids about EPA air research, this spring’s apprenticeship focused on two 21st century skills: technology and communicating science. These are career tools for a host of much-needed occupations, but are also vital to advancing research for protecting human health and the environment.

We challenged students to share their new air quality knowledge creatively. They designed posters for a community Air Fair and crafted rhyming “public service announcements” to explain how EPA’s AirNow School Flag Program helps young people stay healthy.

The highlight of the apprenticeship for me was standing back as the students showcased what they learned in a scientific presentation for parents, teachers, and scientists. Nearly 300 people attended this culminating event for all the spring apprenticeships. With remarkable professionalism our class explained figures on poster displays, operated their air sensors, and quizzed the audience with an air quality game.

The guests were impressed by the students’ knowledge and caught their enthusiasm in learning about air quality. Asked if the sensor measured pollen, one student said, “oh no, that’s much too big, we are measuring very tiny particles.” Such responses exhibited scientific thinking, focus, and vastly improved understanding of air pollution.

As Citizen Teachers, we were proud to see even the shyest kids present with confidence. These students reminded me that introverts can share passionately when strongly motivated by the subject. By the end of the apprenticeship I had gained my own confidence as an educator from this young flock of scientists.

About the Author: Dana Buchbinder is a Student Services Contractor in EPA’s Office of Research and Development. She hopes you will attend the upcoming Air Sensors Workshop, where speakers in Research Triangle Park, NC will present on air quality monitoring with students.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.