It’s Arrested Urban Watershed Development

By Annie Zwerneman

They say April showers bring May flowers – but what happens to the rain that doesn’t end up watering plants?

In areas where the natural vegetation has been replaced by buildings, pavement, and other types of human development, a good deal of that rain water doesn’t get absorbed. Instead, it flows across the watershed, picking up pollutants and nutrients as it goes. In large urban areas, the natural systems can quickly become overwhelmed, leading to trouble in the form of impaired water bodies downstream, increased erosion, and damaged ecosystems.


EPA interns sampling a stream near Providence, RI.

EPA scientists helped address the growing concern for these pollutants by testing the waters in streams throughout the northeastern United States. A team of EPA researchers, led by Nathan Smucker and Anne Kuhn, set out to understand how we can better manage pollution that negatively affects valuable freshwater resources.

Smucker, Kuhn, and their team selected sites to research that were evenly distributed throughout the heavily urbanized Narragansett Bay watershed. Specific sites were picked in order to capture a complete range of low to high development in watersheds that drain to the bay.

The science team focused on how important components of stream food webs and water quality were affected by urbanization. In conjunction with other EPA research in the region, they found that riparian vegetation was integral to reducing negative impacts on algae and macroinvertebrates associated with watershed development. Stream ecosystems and food chains are further impacted when riparian vegetation is destroyed by development or erosion. Their research showed that if vegetation buffers are maintained next to streams, some of the negative effects of watershed development can be reduced.

Results from the research and literature review analysis will provide insight into preventative actions for decision makers that are building or developing on watersheds and aid with managing stream resources in watersheds with existing development. By identifying how past development has affected stream ecosystems, we can predict what might happen as ongoing development occurs, and we can work proactively on strategies to keep ecosystems intact and pollution at bay.

About the Author: Annie Zwerneman is an intern for the EPA’s Office of Research and Development.

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.