Skip to content

Modeling Fish on the Move

2014 July 31

By: Marguerite Huber

How many places have you lived? Why did you move? Personally, I have lived in eight different places because of school and jobs. Other people move to find better opportunities, like housing or a place to raise their children.

Fish are sometimes forced to move as well. But, unlike you and I, fish cannot just get up and move across towns, states, and countries. They have to move across their own river networks to maximize survival.

For fish, the availability of sufficient spawning and rearing habitats can strongly influence the productivity of an entire river network. Fish also move based on certain environmental drivers like warming temperatures, and human activities such as land development, building of dams, and changes in stream channels, which can contribute to water pollution or alter fish habitat. Additionally, fish are affected by their interactions with other species. When different species interact, they can compete for resources or have a predator-prey relationship.

The Willamette river network, color-coded to show which of the 3 primary environmental conditions are currently most limiting habitat suitability for Chinook salmon, a species of high management concern.

The Willamette river network, color-coded to show which of the 3 primary environmental conditions are currently most limiting habitat suitability for Chinook salmon, a species of high management concern.

To fully understand fish in their changing environment, EPA researchers created a model that simulates groups of fish in river landscapes. This model helps determine how fish populations reproduce, move, and survive in response to both environmental drivers and species interactions. It is designed to help EPA assess the impacts of land development on fish assemblages, and better understand how these impacts may be intensified by climate change.

The researchers studied how Chinook salmon (Oncorhynchus tshawytscha) respond to steepness of the stream channel, flow, and temperature in the Willamette River basin of Oregon. This region is important to study because it is expected to experience substantial rises in human population and water demand over the next 50 years. The model, which can be applied to any watershed, helped create a map of the salmon’s abundance and distribution in the Willamette River basin. To capture species interaction, scientists also modeled the abundance of another fish, the northern pikeminnow (Ptychocheilus oregonensis), a native predator and competitor of Chinook salmon.

Afterwards, researchers modeled both species together, accounting for projected effects of competition and predation. They found that species interactions and temperature affect both Chinook salmon and northern pikeminnow. The results show species distributions throughout the basin and their projected responses to future stressors such as climate change, water consumption, and hydropower management.

Not only will EPA’s model help construct a map of fish on the move, but it will help inform the science used to develop water quality regulations and trading, help prioritize restoration, and advise management decisions.

About the Author: Marguerite Huber is a Student Contractor with EPA’s Science Communications Team

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

5 Responses leave one →
  1. Arman.- permalink
    July 31, 2014

    Fish And Kids.-

    Fresh article Marguerite !!! Could our kids that enjoy to play with them involved on vacation, all at once to introduce climate change impacts!

  2. k.m. peter mathew permalink
    August 4, 2014

    It is quite educative and throws light on how interdependent and interconnected we are with nature and may i use it as example in my class to encourage children to highlight the concept of our responsibility to protect nature. All thanks Marguerite Huber.

  3. Marguerite@EPA permalink
    August 5, 2014

    Thank you for your comments!

  4. Michael Sierszen permalink
    August 7, 2014

    I found out that the lead is Brenda Rashleigh by following the “model” link, but it would be good journalistic form to identify the scientists who are doing this work in your text.

    • SamAtEPA permalink*
      August 7, 2014

      Thanks for the suggestion, Michael. We like to include what detail we can while still keeping the post pithy and easy to digest, so it’s good to know that our readers want to know the names of the lead researchers. My fellow blog editor and I will keep this in mind when working on future blog posts.

      If you ever want to read more detailed stories about EPA’s research, please check out EPA’s Science Matters Newsletter at In these articles, we include much more information on who was involved in the research and their affiliations.

Leave a Reply

Note: You can use basic XHTML in your comments. Your email address will never be published.

Subscribe to this comment feed via RSS