Skip to content

Advancing Chemical Testing by the Thousands

2014 May 22

Reposted from EPA Connect, the official blog of EPA leadership.

By Bob Kavlock

Bob Kavlock PortraitStudying thousands of chemicals at a time with the use of high-tech computer screening models and automated, often robot-assisted processes sounds like science fiction. But it’s not. EPA scientists are doing just that, leading the advancement of “high-throughput screening,” fast, efficient processes used to expose hundreds of living cells or isolated proteins to chemicals and then screen them for changes in biological activity—clues to potential adverse health effects related to chemical exposure.

This scientific advance is positioned to transform how we understand the safety of chemicals going forward. Twenty years ago, using high-throughput screening to test chemicals for potential human health risks seemed like technology that belonged in a science fiction television series rather than in real life.

Back then there were several large data gaps that would not allow us to extrapolate from the isolated biological changes we observe on a cellular level to adverse human health effects. However, through our computational toxicology (CompTox) research, which integrates, biology,

Robotic arm moving samples for screening

Robotic arm moves samples for automated chemical screening.

biotechnology, chemistry, and computer science, that is changing. We are helping to transform the paradigm of chemical testing from one that relies almost solely on expensive and time-consuming animal testing methods to one that uses the full power of modern molecular biology and robotics.

A significant part of this effort is the Toxicity Forecaster (ToxCast), launched in 2007. ToxCast allows us to prioritize potentially toxic chemicals for more extensive testing as well as giving us the opportunity to test newer, possibly safer alternatives to existing chemicals. By 2013, we evaluated more than 2,000 chemicals from industrial and consumer products to food additives using more than 500 high-throughput screening assays.

Read the rest of the post. 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

No comments yet

Leave a Reply

Note: You can use basic XHTML in your comments. Your email address will never be published.

Subscribe to this comment feed via RSS