science to achieve results

Air Pollution and Your Brain

By Michelle Becker

Graphic depiction of the brainNext week is Air Quality Awareness week, which is a time to reflect on how far we have come in our understanding of the health effects of air pollution. We know air quality can affect the lungs and heart and cause serious health problems, as documented in a large body of scientific literature. However, we don’t know very much about the potential effects on the brain.

That is why EPA supports research through its Science to Achieve Results (STAR) grant program to further examine potential health effects of air pollution. The Clean Air Research Center (CLARC) at Harvard University receives funds from EPA to explore the health effects of air pollution mixtures across organ systems and during various stages of human life.

Recently, the center published a study in the journal Stroke that looked at what may happen to the brain of older adults after long-term exposure to fine particle pollution (PM2.5), which is emitted from tail pipe emissions as well as other sources. The study included 943 individuals over the age of 60 with no history of dementia or stroke. They also lived within 1,000 meters (0.62 miles) of a major roadway where levels of air pollutants are generally higher.

Researchers looked at pictures of the brain using a technique called Magnetic Resonance Imaging (MRI) to identify the differences in certain brain structures. Then they considered the pictures in connection with the distance participants lived from a major road.

After considering all the data and a number of other factors that might affect the brain, the researchers found that exposure to outdoor PM2.5 was associated with a decrease in total cerebral brain volume and an increase in covert brain infarcts (known as “silent” strokes because there are no outward symptoms). The impact of being close to roadways was less clear.

So what are the potential implications? A decrease in cerebral brain volume is an indicator of degeneration of the brain, which can lead to dementia and other cognitive impairments. Also, an increase in covert brain infarcts increases a person’s risk for a major stroke.

To give you a better idea about PM2.5 (particulate matter of 2.5 microns in diameter) the average human hair has a diameter of 100 microns. So these air pollutant mixtures are roughly one quarter the diameter of a single hair on your head. That is to say, very small. Yet these small particles pack a big punch when it comes to our health. The study demonstrates an increase of just 2 micrograms per cubic meter can cause brain deterioration.

This study is one of the first to look at the relationship between air pollution and the brain so the evidence is suggestive. The study contributes to a growing body of scientific research that is exploring the cognitive connections to air pollution. So this week while we think about air quality, let’s remember that small things can make a big impact and that science can help us to learn more about air quality and our health.

About the Author: Michelle Becker, M.S, is currently working with the Air, Climate, and Energy research program in EPA’s Office of Research and Development through a Skills Marketplace opportunity. The project has allowed her to increase her scientific communication skills and to learn more about EPA funded research to protect human health.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Driving Innovation While Ensuring Clean, Safe Drinking Water

By Ramona Trovato

Across the country, 94 percent of the 150,000 public drinking water systems are considered small systems, meaning they serve fewer than 3,300 people. While many of these small systems consistently provide really good, safe and reliable drinking water to the people they serve, they face enormous challenges in their ability to maintain, replace, and improve their technologies.

EPA' Ramona Trovato (Associate Assistant Administrator, Office of Research and Development) and Curt Spalding (New England Regional Administrator)

EPA’ Ramona Trovato (Associate Assistant Administrator, Office of Research and Development) and Curt Spalding (New England Regional Administrator)

To address this issue, I recently participated in the announcement of a $4.1 million Science to Achieve Results, or STAR, grant establishing the Water Innovation Network for Sustainable Small Systems (WINSSS) Center at the University of Massachusetts Amherst. Along with Governor Deval Patrick, Chancellor Subbaswamy and EPA’s New England Regional Administrator, Curt Spalding, and others, we recognized the need for innovation in the water sector, specifically for small drinking water systems.

In New England, where the WINSSS is located, a total of about 10,000 systems are small which is about 90% of the region’s drinking water systems.

One of the biggest challenges is financial resources. Aging infrastructure needs to be maintained and replaced when there’s a leak. They also need to find ways to improve their infrastructure, but there just isn’t a lot of money for capital improvements.

State primacy agencies also find it difficult to support the high number of small systems across the country. Small systems operators also need to stay up to date with treatment alternatives, regulations, health implications, and emerging contaminants. Many small systems would perform better using new and innovative technologies that are more affordable, last longer, and require less maintenance. Another challenge is access to tested and reliable technologies.

The WINSSS Center will ultimately help small systems produce safe drinking water and operate in the most efficient manner possible while providing information and access to these technologies.

The Center will:

  • Create standardized cross-state testing requirements so that new technologies can get to market faster at a less expensive cost.
  • Develop novel approaches to treating groups of contaminants so that we’re not treating one contaminant at a time. This will reduce costs and is more effective than treating contaminants individually.
  • Create tools to simplify operations like an asset management application to help systems operators log all their assets and provide monitoring and notifications for maintenance.
  • Develop a database identifying technologies that are suitable for small systems use – taking into consideration energy use, regulatory requirements and system acceptance.
  • Build a network to share information with other small systems around the country.

The Center—and another we’ve funded at the University of Colorado, Boulder—will meet today’s urgent need for state-of-the-art innovation, development, demonstration, and use of treatment, information and process technologies in small water systems.

About the Author: Ramona Trovato is the associate assistant administrator in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Clean Cookstoves Research: An Opportunity to Benefit Billions

By Bryan Bloomer, Ph.D.

I have long appreciated the ability to cook and heat my home with minimum risk of exposure to toxic indoor air pollution. But I am also painfully aware that more than 3 billion people around the world rely on inefficient, unsustainable and dangerous cookstove technologies for their everyday cooking, heating and lighting needs.

Display of clean cookstoves.

EPA’s Bryan Bloomer examines clean-burning prototypes at the Cookstoves Future Summit in New York City.

That is why I am so pleased to join EPA Administrator Gina McCarthy and other prominent leaders this week at the first ever ministerial- and CEO-level Cookstoves Future Summit, “Fueling Markets, Catalyzing Action, Changing Lives,” in New York City.

Traditional cookstoves typically burn biomass fuels such as wood, dung, crop residues, charcoal or the fossil fuel, coal. This causes a wide range of negative health effects to the people, primarily women and children, exposed to the smoke they emit. And there’s more. The use of traditional cookstove technologies also depletes natural resources, contributes to deforestation, and releases harmful pollutants into the atmosphere that contribute to climate change at regional and global scales.

This is why clean cookstoves research is a top EPA priority. Our goal is to transform the sustainability and health impacts of the energy infrastructure in ways that will not only improve the health of billions, most of them disadvantaged women and children, but improve the global environment as well.

We conduct and support cooperative research to identify gaps and deliver practical solutions from a wide array of stakeholders. The Agency is leading an international clean cookstove research effort, helping to support the development of international cookstove standards, conducting trusted independent research on the energy efficiency and emissions of cookstoves, and improving our understanding of the negative health impacts from exposure to cookstove smoke.

In March 2012, EPA announced the funding of six universities to address residential burning and its effects on human health worldwide. This group of researchers is developing innovative technologies to quantify the impacts of cookstove emissions on climate and air quality.

Moving forward, we and our many partners in this global effort will focus on translating these results into the field, primarily bringing innovative, consumer-driven and life-saving technologies to individuals worldwide.

Turning research results into welcomed solutions is the topic of this week’s Cookstoves Future Summit. The summit presents a unique opportunity to further develop a thriving and sustainable clean cookstove market. Such a market will mean substantial progress toward preventing the more than 4 million estimated indoor air pollution related deaths due to traditional cookstoves and fuels.

The clean cookstoves challenge encompasses a number of health, social and environmental issues. Such a pressing and compelling problem presents us with a significant opportunity to improve livelihoods, empower women and protect the environment for generations to come.

About the Author: Dr. Bryan Bloomer is the director of the Applied Science Division at EPA’s National Center for Environmental Research. He works with grant managers that support scientists and engineers through the Science to Achieve Results (STAR) grants program, to improve EPA’s scientific basis for decision on air, climate, water and energy issues.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Highlighting the Health-protective Properties of Alaskan Berries (your Elders already knew)

November is Native American Heritage month. Throughout the month, we will be featuring blogs related to Tribal Science.

By Mary Ann Lila

I was ecstatic when the EPA Science to Achieve Results (STAR) Program put out the request for applications for the study of tribal resources and climate change. My office mate was a rural sociologist, so we put our heads together and wrote up a plan for research that we’d been hoping to tackle for years: wild Alaskan berries.

Native Alaskan elder and researcher examine a wild plant.

“Wildcrafting” with a Native Alaskan.

Regions of the Alaskan arctic tundra are considered to be on the ‘front lines’ of climate change. The dramatic consequences of climate-related shifts are most evident around coastal areas. For example, the retreating glaciers, and the shrinking sea ice that diminishes hunting territory for walrus and polar bears.

But in the arctic, the climate also exerts a decisive impact on terrestrial plants, including the wild indigenous berries that thrive even above the tree line, the most hostile environments throughout the state. Frequently these berries (mossberries, salmonberries, bog blueberries and more) also proliferate around Alaska Native communities, where they are one of the only wild edible resources from the land (most other foods are obtained from the sea or as shipped-in commodities).

Berries that have adapted to flourish in the arctic are able to survive environmental insults by accumulating a cornucopia of defensive, natural plant chemicals. The chemicals help to buffer the berries against the ravages of climate extremes, but once ingested, these same chemicals can be healthy. They help Alaskan natives resist many insults of chronic diseases, including the power of the berry to inhibit diabetes symptoms.

Will climate change have an effect on this revered native resource? On the one hand, moderating temperatures may allow berry harvests to occur more routinely. On the other hand, the moderating climate may lead to competing species invading berry habitat. And perhaps most importantly, will the berries fail to accumulate protective plant chemicals at such high concentrations? The answers aren’t immediately clear, and only long-term, sustained studies will begin to unravel the true impacts of climate change on the berry resources.

November is Native American Heritage Month.

November is Native American Heritage Month.

In our work, the Tribal communities around Point Hope, Akutan (in the Aleutian Islands) and Seldovia have been gracious hosts to the analyses, and have been receptive to learning more about how science tests demonstrate the power of the berries against disease targets.

Not only have the Elders joined in the science based studies, but they’ve gladly contributed the background traditional ecological knowledge (TEK) about how berries have been historically valued and used in their communities, as a control of blood glucose and a healthy metabolism. Elders have been happy to show the youth in the Tribal communities, with their own eyes, that modern science agrees with, and validates TEK.

About the Author: Mary Ann Lila is the Director of the Plants for Human Health Institute at North Carolina State University. Her research team has worked for nearly a decade in Alaska with the berries and other native wild plants, which she considers to be the prime example of how plants’ adaptations to harsh environments ultimately protect human consumers of that plant.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Supporting Innovation for Cleaner Burning Cookstoves and Cleaner Air

By Jim Johnson

The end of May is always one of my favorite times of year. It includes Memorial Day, the official holiday to honor the service of our dedicated military personnel and military veterans, and my birthday.

If your neighborhood is anything like mine, the end of May also coincides with the time of year when the evening air fills with the unmistakable scent of backyard grilling. Barbeque season. Here in this country, that distinctive odor of smoke is associated with tasty food, relaxing, and good times spent with friends and family.

But for most of the world’s population, the smell of an open fire is something completely different. It’s not nostalgic or a welcome diversion from the norm, but a necessity.

Nearly three billion people worldwide rely on burning fuels such as wood, plant matter, coal, and animal waste. And because most of that occurs indoors, it’s a health hazard, too.  The World Health Organization estimates that exposure to smoke from traditional cookstoves leads to 4.3 million premature deaths per year.

Cookstove researcher at work

EPA is a leader in conducting and supporting clean cookstove research.

What’s more, it’s not just a local problem. The smoke from traditional cookstoves is a major source of black carbon, an air pollutant linked to a range of impacts associated with our changing climate, including increased temperatures, accelerated ice and snow melt, and changes in the pattern and intensity of precipitation.

And that brings me to another reason why the end of May this particular year is even a bit more special for me than usual: Yesterday, EPA announced almost $9 million in research grants awarded to six universities to help usher in a new generation of clean, efficient cookstoves.

Funded through our Science to Achieve Results (STAR) program, the research will focus on measuring and communicating the benefits of adopting cleaner cooking, heating, and lighting practices. The impact of the work will improve air quality and protect the health of billions of people, as well as slow climate change—a benefit for everyone, and the global environment, too.

The universities and their research are:

  • Colorado State University researchers will provide new cookstoves to rural areas in China, India, Kenya, and Honduras to explore how their adoption will impact and improve emissions, chemistry, and movement of indoor smoke; they will also assess health and climate impacts.
  • University of Illinois at Urbana-Champaign researchers will investigate how local resources in rural communities in Alaska, Nepal, Mongolia, and China affect the acceptance of cleaner heating stoves, and take measurements to learn how their use impacts air quality and carbon emissions.
  • University of Minnesota, Minneapolis researchers will measure changes in air quality and health outcomes from cleaner cooking and heating technologies in China, and model regional weather, air quality, exposure and human health impacts.
  • University of California, Berkeley researchers will explore the relationship between household and village-scale pollution to understand the effectiveness of using cleaner-burning cookstoves.
  • Yale University researchers will use socioeconomic analyses, emissions and pollution measurements, and global climate modeling to investigate the impacts of using next-generation cookstoves in India.
  • University of Colorado, Boulder researchers will use small, inexpensive sensors to monitor indoor air pollution exposure in homes. They will also collect data through health assessments and outdoor air quality measurements in Ghana.

EPA Administrator Gina McCarthy announced the grants at a reception hosted by the Global Alliance for Clean Cookstoves. EPA is a founding member of this public-private partnership, which seeks to save lives, improve livelihoods, empower women, and protect the environment by creating a thriving global market for clean and efficient household cooking solutions. Our collective goal: 100 million homes adopting clean cooking solutions by 2020. Achieving that will really be something to celebrate!

About the Author: Dr. James H. Johnson Jr. is the Director of EPA’s National Center for Environmental Research, which runs the Agency’s STAR program as well as other grant, fellowship, and awards programs that support high quality research by many of our nation’s leading scientists and engineers.

 

 

 

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

One Career (of many) Built by the EPA STAR Program

By: David Cwiertny

I wouldn’t be the environmental engineer that I am today without the EPA Science to Achieve Results (STAR) program, which funds research grants and graduate fellowships in environmental science and engineering disciplines. The research funded through this program complements EPA’s own, and that of other federal agencies, to help protect human health and the environment.

In 2004, I was entering the fourth year of my doctoral research at Johns Hopkins University.  As often happens near the end of a doctorate, my funding had dried up.  Finding new support was stressful and diverted my attention from research.  The EPA STAR graduate fellowship allowed me the financial and intellectual freedom to pursue my priority: development of new technologies to treat contaminated groundwater.

In addition to funding my research, the EPA STAR program let me interact with other Fellows at the STAR conference, integrating me into a peer network of excellence.  And because the fellowship is very competitive, it helped me secure a tenure-track faculty position at the University of California, Riverside (UCR).  That job ultimately led to my current position at the University of Iowa, where the EPA STAR program remains a vital source of support as I continue to grow my research program.

Environmental Engineer David Cwiertny by the Iowa River.

Environmental Engineer David Cwiertny by the Iowa River.

In December 2011, I was awarded an EPA STAR grant to improve small drinking water systems.  Through this particular grant, my research program is trying to develop more efficient and cost-effect treatment technologies to improve the quantity and quality of drinking water in small, rural communities, many of which often lack adequate resources for a safe and reliable water supply.  The end result will be in-home treatment units that could be of tremendous value to the number of communities, in Iowa and beyond, that rely on private groundwater wells, many of which are compromised by pollutants such as arsenic and nitrate. During my tenure as a STAR grantee, I had the privilege of mentoring an EPA STAR Fellow, Rebekah Oulton, who received the award while working in my laboratory on related work trying to improve water and wastewater treatment technologies.

At all stages of my career, the EPA STAR program has been instrumental to my development as an environmental scientist and engineer.  EPA’s support has afforded me the flexibility and continuity to pursue my research, directly addressing current environmental challenges to our nation. I’ll forever be grateful to the investment EPA has made in me, as it has allowed me to fulfill my professional dreams and aspirations, and help protect our nation’s water resources and the health of the general public that rely on them.

About the Author:

David Cwiertny is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of Iowa. He is a former EPA STAR Graduate Fellowship recipient and conducts research currently funded by the EPA STAR program. At the University of Iowa, he is a member of the campus-wide Water Sustainability Initiative, developing interdisciplinary research, outreach and education programs intended to increase water awareness at the university, within Iowa, and across the United States.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.

Science Wednesday:Rising STARs

Each week we write about the science behind environmental protection. Previous Science Wednesdays.

By Aaron Ferster

This week, I had the pleasure of joining a few colleagues to talk about science communication at the 2011 EPA STAR Graduate Fellowship Conference here in Washington, DC. “STAR” stands for Science To Achieve Results, a competitive grant program EPA administers to advance human health and environmental science in support of its mission.

The conference brought together STAR grantees and STAR graduate fellows from colleges and universities across the country to talk shop about their research and learn about how their particular work fits into EPA’s commitment to science and engineering.

“The competitive STAR Fellowship prides itself for attracting, supporting and bolstering the next generation of environmental scientists, engineers and policy makers. In doing so, the program enhances the environmental research and development enterprise, advances green principles and bridges diverse communities that help EPA better meet its mission,” wrote EPA’s William Sanders III, Dr. P.H. in the Awardees Research Portfolio. Dr. Sanders is the Director of EPA’s National Center for Environmental Research, which administers STAR and other EPA grant and awards programs.

Conference attendees included STAR fellow graduate students conducting work in one of eight broad research categories important to EPA: global change, clean air, water quality, human health, ecosystem services, pesticides and toxic substances, science and technology for sustainability, and emerging environmental approaches.

As the editor—and chief cheerleader—for Science Wednesday, I am always thrilled to have the opportunity to meet EPA and partner scientists who are eager to share their work. The conference did not disappoint! While all the students’ topics have intimidating-sounding titles, (here’s one picked entirely at random: Novel Molecular Methods for Probing Ancient Climate Impacts on Plant Communities and Ecosystem Functioning: Implications for the Future), as a group, the STARs were eager to learn about opportunities for sharing their work. Please stayed tuned for updates here on Science Wednesday.

It’s great to see that EPA is supporting the next generation of scientists and engineers while it meets its own mission to protect human health and the environment. Cleary, the STARs are rising.

About the Author: Aaron Ferster is the lead science writer for EPA’s Office of Research and Development and the editor of Science Wednesday.

Editor’s Note: The opinions expressed in Greenversations are those of the author. They do not reflect EPA policy, endorsement, or action, and EPA does not verify the accuracy or science of the contents of the blog.

Editor's Note: The opinions expressed here are those of the author. They do not reflect EPA policy, endorsement, or action, and EPA does not verify the accuracy or science of the contents of the blog.

Please share this post. However, please don't change the title or the content. If you do make changes, don't attribute the edited title or content to EPA or the author.