Farmers Using Special Crops in Holtwood, PA to Protect Soil & Help Their Farms Thrive

By Kate Pinkerton and Erika Larsen

It is hard to imagine anything growing in fields during winter, but last fall, we visited a farm in Pennsylvania that was covered in thriving, green crops. This farm showcases crop research and water quality conservation practices on agricultural lands. One of its practices is planting “cover crops” – or crops planted specifically to help replenish the soil and protect our waters outside of the typical farming season.

We are two coworkers in the Oak Ridge Institute of Science and Education (ORISE) program in the EPA Office of Wetlands, Oceans, and Watersheds. We come from two different backgrounds – agriculture and water quality – to help farmers ensure that nutrients like phosphorus and nitrogen stay on the farm where they help crops grow, rather than getting washed into our rivers and streams where they can build up and become nutrient pollution, or the excess of the vital nutrients phosphorus and nitrogen.

Farmers plant cover crops to improve and protect their soil and keep these nutrients from washing away in runoff, especially when they’re not growing crops they can sell. A variety of plants can be used as cover crops, including grasses, grains, legumes or broadleaf plants. By planting cover crops, farmers help the environment and themselves by increasing their soil’s health and water retention, potentially increasing crop yields and creating more habitat for wildlife.

The 200-acre farm we visited in Holtwood, PA – owned by Steve and Cheri Groff – produces corn, alfalfa, soybeans, broccoli, tomatoes, peppers and pumpkins. Annual cover crops help the farm be productive by maintaining a permanent cover on the soil surface at all times. During the tour, we talked with the Groffs about how cover crops store nutrients for the next crop and impact yields, what cover crop mixtures to use and the benefits of having multiple species. We also watched demonstrations on cover crop rooting depths, and how cover crops help soil health and water/nutrient cycling.

We were joined by other local farmers, agricultural conservation NGO staff, and representatives from other government agencies, including USDA’s Natural Resources Conservation Service and Risk Management Agency. Rob Myers, Regional Director of the North Central Sustainable Agriculture Research and Education (SARE) program, said, “When you compare fields that are normally bare in the fall with a cover crop field capturing sunlight and protecting soil and water, it’s a pretty striking comparison.”

We enjoyed checking out the Groffs’ farm and seeing the wonderful progress that has been made on cover crop use and research, and we’re excited by the opportunities to collaborate to improve soil health and water quality. We hope to see this field continue to grow!
To learn more about cover crops please visit our website: http://water.epa.gov/polwaste/nps/agriculture/covercrops.cfm.

 

ORISE program participant Kate Pinkerton, Chief of the Rural Branch in EPA’s Office of Wastewater Management Allison Wiedeman, and ORISE program participant Erika Larsen stand in front of a cover crop research plot at Steve and Cheri Groff’s farm in Holtwood, PA.

ORISE program participant Kate Pinkerton, Chief of the Rural Branch in EPA’s Office of Wastewater Management Allison Wiedeman, and ORISE program participant Erika Larsen stand in front of a cover crop research plot at Steve and Cheri Groff’s farm in Holtwood, PA.

 

About the authors:

Erika Larsen is an Oak Ridge Institute for Science and Education (ORISE) research participant in the Nonpoint Source Control Branch in EPA’s Office of Wetlands, Oceans, and Watersheds. Erika is a soil scientist from Florida and currently works on agriculture and water quality issues.

Kate Pinkerton is an Oak Ridge Institute for Science and Education (ORISE) program participant on the Hypoxia Team in EPA’s Office of Wetlands, Oceans, and Watersheds. Kate is originally from Kentucky and studied environmental science at American University. She currently works on nutrient pollution and hypoxia issues in the Mississippi River Basin and the Gulf of Mexico.